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RESUMO

Este trabalho tem como objetivo principal a analise do comportamento
de um trocador de calor em fluxo cruzado quando operado em um regime
transiente. Primeiramente, foi estudado um modelo te6rico de um trocador
deste tipo, de onde foi feita uma modelagem matemética para que seja
possivel estudar a dindmica das temperaturas internas do trocador até que
estas cheguem a um valor de regime. Com o modelo bem definido, foi
estudado o seu comportamento em condi¢cbes variaveis de funcionamento
assim como foi dado um inicio a um estudo para adaptar o modelo simples

para um composto por varios sistemas em conjunto.



ABSTRACT

The main objective of this work is the analysis of the behavior of a
cross-flow heat exchanger in transient state. Firstly, a theoretical model of
this type of exchanger was modeled. With this mathematical model we were
able to create command lines so we could study the behavior of the internal
temperatures within the exchanger until it reached a steady state. With the
well know model, we studied how the system would behave under variable
conditions and we started a research for an adaptation of the original model
in which we could compose a more complex model of a heat exchanger with

only a combination of the original model.
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1. INTRODUCAO: TROCADORES DE CALOR

Trocadores de calor tém como funcao principal transferir o calor de
uma parte para outra de um equipamento, onde exista uma diferenca de
temperaturas. Geralmente, sdo utilizados para a troca de calor entre fluidos,

um “quente” e outro “frio”, podendo ou nao ser separados por uma parede.

Esse tipo de equipamento € utilizado nas mais diversas aplicacdes.
Seja em maquinas comuns como geladeiras, radiadores de carros e
equipamentos de ar condicionado, mas também em inUmeras aplicacdes

industriais como caldeiras, tanques de refrigeracéo, entre outros.

1.1.TIPOS DE TROCADORES

Dada a definicdo um tanto genérica para esse tipo de equipamento
descrito anteriormente, € normal esperar inumeros tipos de trocadores.
Devido ao amplo uso e as diversas aplicacdes, pode ser necessario

alcancar diferentes caracteristicas de funcionamento desse dispositivo.

Sendo assim foram desenvolvidos diversos tipos de trocadores de
calor, desde o mais simples, com dois fluidos correndo numa mesma
direcéo separados por uma parede, até modelos bastante complexos. Esse
desenvolvimento de trocadores com caracteristicas construtivas diversas se
deve a busca de equipamentos cada vez mais eficientes, tanto na taxa de

troca de calor, quanto em tamanho ou custo.



Tentando simplificar todas essas possiveis configuraces, podemos

dividir os trocadores em trés tipos:

- Fluxo Paralelo (fig 1.1a), com os dois fluidos escoando na mesma

direcdo com uma parede entre eles.

- Fluxo em contra corrente (fig 1.1b), com construcdo semelhante ao

de fluxo paralelo, mas com os fluidos escoando em direcGes opostas.

- Fluxo cruzado (fig 1.1c), com um fluido passando em uma diregcéo

perpendicular ao outro.

Figura 1.1 - Tipos de trocadores

A partir desses trés modelos de trocadores podemos criar
equipamentos mais complexos. Quando colocados em conjunto, seja uma
combinacao entre eles ou somente varios passes de mesma configuracao, €

possivel criar equipamentos diferentes para aplicagcbes mais especificas,
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alcancando melhores caracteristicas. Na fig. 1.2 a seguir, temos um trocador

com uma combinacéao de fluxo cruzado e contra corrente.

ootier STl
: intet Baffles
L
t [ I // \g /1 \i [l::
L= |
% [N A N 7 pe
a N\ 4 - \‘:’/ ‘\
10=
Shell Tube
outlet inlet

Figura 1.2 - Trocador “Cross-counterflow” (INCROPERA, 2008)

1.2.REGIME TRANSITORIO

O método mais simples de se estudar o comportamento de um
equipamento, incluindo trocadores de calor, é estudando o comportamento
em regime permanente. Nesse estado, as caracteristicas do escoamento
dentro do trocador de calor (Velocidade, presséo, densidade e etc.) variam

somente com as coordenadas espaciais.

Um método mais complexo e que permite estudar melhor o
comportamento do trocador é utilizando um regime transitorio. Nesse
estado, € possivel incluir no modelo variagées temporais das caracteristicas
do escoamento. Assim, € possivel estudar ndo s6 o0 comportamento nas
coordenadas espaciais, mas também como todas as varidveis do
escoamento variam no tempo dado alguma variacdo temporal dessas

variaveis.

Com esse estudo em regime transitorio é possivel analisar situacdes

mais criticas do equipamento como em partidas da maquina, quando as
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condigbes variam bastante e a dindmica é bastante distante do regime
permanente. Ou em condi¢cdes de problemas de operacédo, quando ocorrem
picos de temperatura ou pressao, gerando uma condicdo inadequada que

mesmo que momentanea pode gerar complicagdes no processo.
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2. OBJETIVOS

No trabalho de final de curso de Beato e Monte (2012) foram
estudados o comportamento de dois desses tipos de trocadores
fundamentais, em fluxo paralelo e em contra-corrente. No texto, as autoras
encontraram um modelo matematico para essas configuracbes de
trocadores e estudaram a resposta destes em regime transitorio para

variacfes de temperatura nas entradas.

Como complemento ao estudo citado, esse trabalho tem como
objetivo principal analisar o comportamento de trocadores de calor em fluxo
cruzado. Primeiramente sera buscado um modelo adequado para o sistema
e, a partir deste, realizado diversas simulagées buscando a resposta para
diversas situacbes de funcionamento. E importante notar que esse trabalho

busca principalmente a resposta para um sistema transitorio.

Com um modelo adequado, serdo feitas simulacdes variando os
diversos parametros do modelo para buscar uma otimizacdo da resposta.
Apds essa etapa, sera feito um estudo considerando as caracteristicas
construtivas de um trocador desse tipo incluindo caracteristicas de
equipamentos reais e levando em consideracdo o escoamento dos fluidos,
caracteristica bastante importante para se avaliar a troca de calor dentro de
um trocador de fluxo cruzado. Devido a diversas hipéteses simplificadoras,
essas caracteristicas irdo pouco influenciar o modelo teérico estudado a

principio.

Para resolver o problema real do trocador, considerando uma
construcdo real deste equipamento, iremos realizar um estudo do
escoamento através de softwares de dindmica de fluidos computacional
para encontrar um modelo um pouco mais proximo ao de modelos

comerciais.
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3. MODELO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO

3.1.MODELO FisICO

Para encontrar o modelo matematico necessario, € necessario
primeiramente definir um modelo fisico a ser estudado. No caso do trocador
em fluxo cruzado, sera considerada uma chamada “célula” do trocador como

a da figura 3.1.

Figura 3.1 - Célula do trocador

Nessa célula, temos dois fluidos, denominados quente (indice h) e frio
(indice c) escoando perpendicularmente entre si, separados por uma parede

de dimens0bes e materiais bem definidos.
A figura 3.2 mostra um diagrama com as dimensdes da célula e uma

distribuicdo de temperaturas genéricas esperadas, onde jA4 € possivel

denominar algumas variaveis importantes para o modelo.
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Figura 3.2 - Diagrama para o trocador de fluxo cruzado

Nesse modelo fisico deveremos adicionar algumas hipéteses para o

desenvolvimento adequado. S&o elas:

- Fluxo perpendicular de escoamento;

- Regime transitorio;

- Armazenamento térmico na parede e nos fluidos;
- Troca de calor adiabatica;

- Fluxo ndo misturado dentro da célula.
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3.2.EQUACIONAMENTO

O equacionamento do sistema considerado sera dado em trés partes:
O balanceamento energético do fluido quente, do fluido frio e da parede. No
geral, o balanceamento sera dado como a soma das energias que entram e
saem da regido considerada que sera igualada ao armazenamento na
regido. Todos os calculos dessa sec¢ao serdo realizados tomando a particula

em destaque da figura 3.2.

Antes do equacionamento, sdo necessarias algumas defini¢des:

. mbx
m:—
u
_6x
U=t
S =LyL,

Sendo:
m — Fluxo de massa instantaneo
u — Velocidade instantanea

S — Area de troca de calor

3.2.1. BALANCO DE ENERGIA NO FLUIDO QUENTE

No fluido quente, o balanco serd dado pela diferenca de energia
contida no fluido na entrada e saida da célula, subtraido da energia
transferida para a parede, tudo isso igualada a energia armazenada no
fluido:

15



[En. fluido quente na entrada — En. fluido quente na saidal]

— [Calor para a parede] = [En.armazenada no fluido quente]

Oy . Sy oT,
l(mh L_> ChTh - <mh L_> Ch (Th + Th 6_;6X)l - hh(SXCsy)(Th - TW)
y y

. (Oy aT,
y

Fazendo algumas transformacdes, chegamos a:

aTh aTh hhS Up
S T ung, = —( )—(Th—Tw) (3.2)

MpCr/ Ly

3.2.2. BALANCO DE ENERGIA NA PAREDE

Na parede, o balanco energético tera alguns fatores exclusivos para a
parede, na forma da conducéo de calor nas direcbes x e y, ndo existentes
nos fluidos. O balanco geral sera dado por:

[Calor vindo do fluido quente — Calor saindo para fluido frio]
— [Conducgido na dir.x + condugio na dir.y]

= [En.armazenada na parede]

[hh((sxSY)(Th - w) - hc(dxay)(Tw - Tc)]
) 5y\ aT,, ) 5x\ 0T,
— {a l—ﬂx <Ax E) W 6x l + @ [—Ay (Ay E) E 5_’)1 ]}

6xdy aT,,
() o

Sendo:
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Teremos entao:

T, . 0°T, - 0°T, ( h,S

h.S
T b b () Mt () -1 69

WCW

3.2.3. BALANCO DE ENERGIA NO FLUIDO FRIO

No fluido frio, temos um equacionamento bastante semelhante ao do

fluido quente. Assim teremos:

[En. fluido frio na entrada — En. fluido frio na saida]

— [Calor para a parede]| = [En.armazenada no fluido frio]

_ Oy . Oy aT,
ch L_> C.T, — <mc L_> C. (TC + T, a—xcéx)l — h.(6x6y)(T,, — T.)
y y

. [dy aT,

y

Fazendo as mesmas transformagdes do fluido quente:

dT, oT, h:S \ u,
—C 4oyl = (T, —T .
ot T ey (mccc) Ly( w=Te)  (36)
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3.3.MODELO MATEMATICO

Com as equacbes definidas, podemos montar o sistema a ser

resolvido:
(0T}, T, hy,S
at T Uy ={m&—m Tw)
oT, . 92T, . 0°T, h,S h.S
Vot e Ry ayz (MWCW) (Th = Tw) = (M cw>( —T) B7)
T, T, h.S e
3 T UG, T ( )z, @

O sistema da eq.(3.7) nos fornece uma solucédo geral (considerando
as hipoteses utilizadas) para a dinamica do trocador. A partir dele é possivel
considerar algumas simplificagdes. Na eq.(3.8) a seguir, temos um sistema
guando desconsideradas variagdes temporais, ou seja, quando considerado

um regime permanente.

( aTh hhS Up
—h = — AT, =T
tn 0x (thh) Lx( h W)

_ 9T, . 0°T, hyS h.S
e Tl ay? (MWCW) (T = Tw) = (M Cw)( —T) (38)
h.S

4 dT, (
u =
L oy

w‘

_C
L,

Por fim, uma dltima variacéo, desta vez muito mais util nesse estudo,
onde retiramos os termos de condutividade térmica na parede (os termos de
derivada segunda). Esse sistema se torna muito mais adequado devido a
menor influéncia desses termos e ao fato de que uma solugdo numérica

considerando esses termos seria muito mais complexa e demorada.

at Un dx N thh L h™ W

oT,, h,S h.S
Rl = () =1 = () B =T 39)
oT, T, h.S

¥ Ty, = Wmdg” Te)
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3.4.METODOS DE SOLUCAO DO PROBLEMA

Para a solucdo do problema de trocadores de calor em fluxo cruzado
existem alguns métodos diferentes na literatura. Aqui sera feito um pequeno
resumo destes métodos considerando suas caracteristicas principais e

eventuais problemas.

3.4.1. METODO DE TRANSFORMADA DE LAPLACE

Romie (1983) e Chen (1991) formularam métodos de solucdo desse
problema utilizando uma Unica transformada de Laplace considerando um
sistema gas-gas com ambos os fluidos ndo misturados. Porém em ambos os
textos foram necessarias hipéteses para se desprezar termos de capacidade

térmica dos fluidos, impossibilitando uma solu¢do completa do escoamento.

3.4.2. TRANSFORMADA DE LAPLACE THREEFOLD

Em dois textos, Spiga e Spiga (1987 e 1992) chegaram a solucdes
para o problema com perturbacdes de temperatura utilizando transformadas
de Laplace Threefold. No primeiro (1987), assim como nha solucao
comentada anteriormente, foram desprezados os termos de capacidade
térmica no sistema gas-gas. Na publicacdo seguinte, os autores incluiram

esses termos na solugéo do problema.

3.4.3. METODO DAS DIFERENCAS FINITAS

Em sua publicacdo, Yamashita ET al. (1978) demonstrou uma
solucdo do problema de fluxo cruzado utilizando o método de diferencas
finitas para um escoamento com um sO passe e variagbes na temperatura

de um dos fluidos. Esse método se beneficia das capacidades
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computacionais para simplificar o problema e permitir resolver inclusive
problemas com mais de um passe sem um aumento significativo da
complexidade da solucdo, embora possa necessitar um tempo razoavel para

a solucdo numérica em caso de malhas refinadas.

A partir dessas solucdes encontradas na literatura, foi escolhido para
este trabalho o uso dos métodos de diferencas finitas. Além da menor carga
matematica necessaria para 0 uso dessa solugdo, a capacidade
computacional atual permite que o sistema considerado seja calculado em
somente alguns minutos em um computador pessoal comum, mesmo com

uma malha bastante refinada (suficiente para a solugédo adequada).

3.5.METODO DE DIFERENCAS FINITAS

O método das diferencas finitas nos permite calcular o
comportamento de sistemas dindmicos através de um espaco discretizado
aproximado do real que nos fornece uma solucdo, também aproximada, da
resposta real. Apesar de ndo oferecer a solugdo exata, o erro intrinsico ao
método pode ser controlado refinando a malha, ou seja, aumentando o
namero de pontos da discretizacdo. Para a discretizacdo do problema, as
dimensdes fisicas serdo divididas em pontos, tanto no espago quanto no
tempo. No caso do problema de trocadores de fluxo cruzado em regime
transitério, sera necessario a discretizacdo de duas coordenadas espaciais

além do tempo.

Nesse tipo de solugdo, serdo calculados os estados e condigdes
somente nesses pontos escolhidos. Assim, a transformacdo da solucéo
discretizada serda sempre aproximada da real. Em contrapartida, esse

20



método gera algumas facilidades no célculo da resposta. A principal delas é
a possibilidade de se substituir as derivadas do modelo matematico por

diferencas entre dois dos pontos da malha.

Com a malha bem definida e a dificuldade das derivadas
ultrapassada, o método permite calcular as condicbes de cada ponto no
espaco em funcédo de condicdes de instantes anteriores. Por esse motivo &
importante deixarem claras as condi¢cfes iniciais do problema, de onde

partirdo os célculos iterativos nessa solucao.

Porém, como todos os métodos este apresenta algumas dificuldades
guando utilizado para o calculo da resposta de um trocador deste tipo. Os

principais problemas séo:

- Espaco bidimensional do problema de fluxo cruzado gera
uma malha muito maior que em uma solucdo para um trocador em fluxo
paralelo ou contra corrente que s6 exige uma dimensdo. Se realizada uma
analise semelhante com um trocador de mesmo tamanho, no problema de
fluxo cruzado teriamos uma malha com o quadrado de pontos.

- Devido aos erros derivados da discretizacdo, temos de usar
uma malha bastante refinada, ou seja, uma diferenca muito pequena entre
0S pontos no espaco e, principalmente, no tempo. Isso gera problemas na
simulagdo ja que conforme as diferengas entre os pontos diminuem, o tempo
gasto na simulagdo pode aumentar significativamente. Entdo € necessério
um balanco considerando um menor erro possivel com um dado tempo habil

de processamento.

3.5.1. DISCRETIZACAO

Na modelagem do sistema, utilizamos a notacéo Ty, T,, € T, para nos

referir as temperaturas reais do fluido quente, da parede e do fluido frio,
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respectivamente. Sabendo que essas temperaturas variam com as trés

dimensdes do sistema, eles serdo tal que:

Th = Th(x'y' t)
T, = Tw(x:y:t)
T, = Tc(x:y:t)

Na discretizacdo, conforme a fig. 3.3, temos a divisao da area definida
por L, e L, em pontos distanciados entre si por Ax e Ay, nas suas
respectivas diregcbes. Nesses pontos, nomearemos as temperaturas de
maneira diferente para deixar claro que se trata de um campo discretizado.
Chamaremos as temperaturas no fluido quente, parede e fluido frio de

05,6, e 6., respectivamente.

Na fig. 3.3 a seguir, podemos ver a representagédo simplificada dos
pontos da malha considerada para um instante qualquer k do tempo. Nesse
exemplo, estdo em destaque alguns pontos de 6;, mas ela se extende para
as outras temperaturas 6,, e 6,. E importante notar que a coordenada i é o

equivalente discreto ao avanco de x, analogamente para jcomy e k com t.

[ k=123..P | $=6,(N,M, k)

0=6,(1,1,k)

Figura 3.3 - Representacédo simplificada da malha para um tempo qualquer

Podemos entdo dizer que, no espaco discretizado:
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Op = On(i,), k)

by = 0y (i, ), k)
0. = 6:.(i,j,k)
Com:
i=1.2,..N
j=12,..M
k=12,..P
E definindo N, M e P tal que:
L
N = x/Ax
L
_ Ly
M= /Ay
P="T/n

Sabendo que Ax,AyeAt sdo o0s intervalos entre 0s pontos

discretizados e T é o tempo total de simulagéo.

Utilizando a temperatura no fluido quente como um exemplo, teremos

trés nomenclaturas para esta:

Tn(x,y,t) = Solugdo real
Th(xi, Vi tk) — Solugdo real num ponto onde existe um ponto discreto (i, j, k)

0,(i,j, k) = Solugdo aproximada no ponto discreto

3.5.2. METODO DE APROXIMACAO DE DERIVADAS

Em um modelo discretizado, o conceito de derivada se torna
incoerente dado que o modelo s6 conta com pontos distantes de A entre si

ao invéz de uma funcdo continua no espaco. Assim, para substituir funcdes
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derivadas no mundo discreto se utiliza a teoria de séries de Taylor. Dela

podemos retirar o seguinte:

TG +6) = TG + 60y + 20T 0T
X - W Oxly, 2 0x*|  3lox’|
o6 s - ey CTT| BT
Oxly, X )= (55 L 3tox3|

Nessa equacdo, § é um termo suficientemente pequeno, o0 que
permite fazer essa igualdade. Se o0 substituirmos por um Ax também

suficientemente pequeno, podemos fazer que

+sz 93T
3! 9x3

Xi

oT|  T(q+Ax)— T(x) (Axd’T
Oxly, Ax 2 0x2

+ ) (3.10)

Até entdo temos utilizado T(x) como uma funcgéo continua. Porém se
analizarmos a equacédo 3.10 com x; sendo um ponto pertencente a malha
discretizada, sabemos que o ponto (x; + Ax) também pertencera a malha.
Com isso, podemos dizer que mesmo em uma malha discretizada, a

aproximacao seguinte sera valida.

a9 _6(+1)— 6()
oxl; Ax

+E(Ax?) (3.11)

Temos entdo um valor aproximado para a derivada com os pontos do
espaco discretizados. E importante notar que essa aproximacg&o inclui um
erro E(Ax?) que dificilmente serd encontrado dado que nido temos como
encontrar os valores das derivadas seguintes da funcdo. Porém, como é
possivel verificar na equacao 3.10, todos os termos incluidos nesse erro sao

funcdo de pelo menos o quadrado da diferenca Ax. Assim, o valor desse
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erro podera ser controlado utilizando um valor suficientemente pequeno para

A, diminuindo seu valor frente aos outros termos da equacao 3.11.

E importante considerar que embora seja importante escolher valores
pequenos para A, um valor muito menor que o suficiente podera gerar um

tempo de processamento desnecessario.

Em alguns casos também podemos fazer uma modificacdo na
equacdo 3.10, onde usamos § = Ax. Podemos também utilizar 6 = —Ax
para gerarmos o que é chamado de método de diferenca reversa. Esse
método serd util para que as simulacbes, que comecam o0s calculos nas
regibes de condi¢cdes de contorno sempre utilizem as temperaturas na

parede durante o célculo.

Ax? 93T
3! 9x3

Xi

oT
0x

X - Ax 2 9x2 o

Xi

aa| -~ 90~ e(i_1)+E’(Ax2) (3.12)

ai_ Ax

Por fim, podemos fazer analises semelhantes para a coordenada y e
também para o tempo t, gerando equacgfes semelhantes as 3.11 e 3.12 com

essas coordenadas.

3.5.3. APLICACAO DO METODO AO PROBLEMA

Como ja explicado, utilizaremos o método de diferengas finitas para
calcular os estados do problema em pontos discretizados. As temperaturas

Tn(x,y,t), T,,(x,y,t) e T.(x,y,t) serdo aproximadas para as funcdes
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0,(i,j, k), 6,(,j,k)eb.(i,j, k) e as derivadas do sistema original 3.9 serdo
aproximadas pelas equacoes 3.11 e 3.12.

Partindo do sistema original 3.9

( aTh aTh ( hhS ) (T )
at uh ax thh L h ™ W
aT,, h,S h.S
Vot = (MC)(Th W)_(MC)(T — T
oT, oT, h.S
| ot "%y T (mCCC)E(TW_TC)

Substituindo as funcdes T pelas funcdes 6:

( aeh(i;j; k) 69h(i,j, k) ( hhS
ot YT o
90y, (i,j,k) [ hpS ) . . ( h.S ) .
el (MWCW (00(0.J. 1) = B (@] = (57°6) (0w (k) = 61,5, k)
96,(i, ), k 0,(i, ), k h.S
06.(L1 k) uCM _ +(_)
\ at (')y mcCc

B CIVOREN IR

mpCp/ L

L_(e (l ]'k) 6 (l ],k))
y

Denominaremos as seguintes constantes:

Substituindo essas constantes e as derivadas temporais conforme a
equacgao 3.11
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- At = —E. (04 (i), k) — 6, (i), K))

gw(i'ij-"l) - Hw(ifj'k) .. .. .. ..
4 At = F. (eh(l;]; k) - Qw(l']vk)) - G. (Hw(lr]'k) - Hc(lr]'k))

Gc(i;jik + 1) - Hc(i,j, k) 696(i,j, k)
+ U ——
\ At dy

=H.(0,,(i,), k) — 6:.(i,), k)

Trocando as derivadas parciais conforme 3.12

AL A = —E.(0n(i,), k) = 6, (i,), k)

= At = = F. (Bh(lr]' k) - ew(lr]'k)) - G. (Qw(l']lk) - Qc(l,], k))
Hc(irj: k + 1) - Hc(i'j' k) Hc(i:jf k) - ec(i'j -1, k)
+ u,
\ At Ay

(0,(i,j,k+ 1) — 0,(i,j, k) + <9h(i,j, k) —6,(i—1,j, k))
h

) =H.(6,(,j,k)—6.(i,j, k)

Organizando melhor as equacdes para facilitar a implementacédo na

simulacdo chegaremos as equacodes:
- Fluido quente

Gh(i'j'K 1) - Gh(i:jflc) I
Hh i,',k —Hh i—l,',k

Ax > —E.(6n(i,j, k) = 6, (i,j, k)| (3.13)

- Parede
0, j,k+1)=6,>7jk)+
- Fluido frio

0.(i,j,k+1) = 6.(i,j, k) +

0c(,),k)-0.(i,j-1k .. .
At. [~ e (L EIE0) 4 H (6, (6, k) = e, kD] (3.15)
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Enfim com as equacdes devidamente discretizadas, podemos
comecar as simulacbes do comportamento do sistema. Nas equacfes de
3.13 a 3.15 podemos calcular um termo da temperatura referente ao um
tempo k+1 somente termos das temperaturas em um tempo k. Com isso
podemos calcular gradativamente todas as temperaturas em todos o0s
pontos do sistema desde que tenhamos um mapa inicial de temperaturas,
em que usaremos a condicao inicial do sistema. Também serdo necessarias

algumas hipoteses para adequar a simulacao:

- No instante t = 0 (k = 1) se inicia o escoamento do fluido quente
dentro do trocador;

- Nesse mesmo instante se inicia a troca de calor entre os fluidos e a
parede;

- O escoamento do fluido quente é suficientemente rapido para se
desprezar as condi¢des transientes nos momentos iniciais do escoamento
dentro do trocador. Com essa hipotese poderemos calcular o
comportamento do sistema como se o fluido ja passasse pelo trocador mas
a troca de calor s6 se iniciasse em t = 0 (k = 1);

- No instante inicial, a temperatura dos fluidos e da parede é igual em
toda a extenséo da superficie de troca;

0,(1,j,1) = Ty, para qualquer i,j
0w (i,7,1) = Ty para qualquer i,j
0:(0,/,1) = T, para qualquer i,

- Em todos os instantes, a temperatura na entrada do fluido quente
(y =0,j =1) sera a temperatura de entrada do fluido (No caso, igual a
temperatura inicial) e a temperatura na entrada do fluido frio (x =0,i = 1)

sera a temperatura de entrada no fluido frio, conforme o mostrado na fig. 3.3

0,0, 1,k) = Ty, para qualquer i,k
0.(1,j,k) = T, para qualquer j, k
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4. SIMULACOES DO COMPORTAMENTO DO MODELO

A partir do sistema encontrado na sec¢ao anterior (egs. 3.13, 3.14 e 3.15),

iremos agora iniciar as simulacoes através de um programa desenvolvido no

software MATLAB (cddigo no apéndice A). Neste programa foi necessaria a

definicdo de algumas constantes do problema listadas na tabela 4.1 abaixo.

Tabela 4.1 - Pardmetros do problema

hy, 2800 | W/(m%K) Uy, 2 m/s T | 100 | s
h. 3100 | W/(m*K) Uc 3 m/s Ax | 0.0002 | m
Ch 2200 | J/(kg.K) my 0.3 kg/s Ay | 0.005 | m
C. 4180 | J/(kg.K) me 0.4 kg/s At | 0.005 | s
Cy 900 J/(kg.K) M. | 0.864 kg
Tpzero | 373 K Lx 0.4 m
T,,zero | 313 K Ly 0.4 m
T.zero | 303 K S | 0.64 m?

Em analises posteriores, poderemos modificar algumas dessas

constantes a fim de visualizar a diferenca de resposta gerada em funcéo da

variacdo de uma constante especifica.

Devido ao problema da temperatura em um trocador de fluxo
cruzado depender de trés coordenadas (X, y e t), a
representacdo gréfica da resposta se torna dificil sem uma
midia de video ou animacdo. Mesmo em um grafico
tridimensional, s6 temos como representar em papel um
grafico de T por x e y, ou quaisquer duas coordenadas. Por
isso, para apresentar os resultados encontrados, teremos que
utilizar alguns meios ndo convencionais, que serdo explicados

conforme a necessidade.
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4.1.CONDICOES INICIAIS
No instante inicial, as temperaturas séo tais quais as seguintes superficies:

- Temperatura do fluido quente (6,,) na superficie de troca

Temperatura Th no instante t=0s

Temperatura Th [K]

Coordenada Y [m]

Coordenada X [m]

Figura 4.1 - Condicao inicial de Th
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- Temperatura do fluido frio (6,.) na superficie de troca

310

305 .

300

Temperatura Tc [K]

290
0.4

Temperatura Tc no instante t=0s

Coordenada Y [m] °o 0 Coordenada X [m]

Figura 4.2 - Condicao inicial de Tc

- Temperatura da parede (6,,) na superficie de troca

340

(&) [
) [
Q (=]

()
ey
<

Temperatura Tw [K]

300

Temperatura Tw no instante t=0s

Coordenada Y [m] 0 o

Coordenada X [m]

Figura 4.3 - Condicao inicial de Tw
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4.2.RESPOSTA NO TEMPO

Para representar a resposta no tempo precisaremos utilizar uma das
maneiras nao convencionais. Na fig. 4.4 a seguir, podemos ver um esquema
de cortes na malha que sera utilizado tanto nessa secao quanto na proxima

para representar as condi¢des finais.

$=0,(N,M,k)

0=0,(1,1,k)

Figura 4.4 - Representacéo dos cortes da superficie

Para mostrar a resposta das temperaturas no tempo, utilizaremos os
cortes paralelos a direcdo do escoamento do fluido que queremos
representar. No caso, utilizaremos os cortes coloridos na fig. 4.4 paralelos
ao eixo x para mostrar condi¢gdes relevantes ao fluido quente (que escoa
paralelo ao eixo x) e os cortes coloridos paralelos ai eixo y para condigbes
do fluido frio. Para a representacédo da variacdo da temperatura da parede
com o tempo, utilizaremos dois graficos, com os dois tipos de corte ja que
esta temperatura ndo varia com uma direcdo principal, mais relevante que a

outra. Os cortes paralelos a x serdo denominados conforme a fig. 4.5.
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< Saida

0,(N,M, k)

S=

/‘

//4

//,.//,. /,. ///o /%

\

VAN

) /,. /V,.

K

.74 /4
)

\ ///.
WA
/4

\

A\

\
o

%
) //y

\

Cond. inicial

x(1)
0,(1,1,k)

y(@)

0=

Figura 4.5 - Denominacao dos cortes paralelos ao eixo X

De maneira andloga, os cortes paralelos a y serdo tais como na fig.

4.6 a seguir.

VAR

//,_ //,. //. A//o //0

¢
\
)

Cond. inicial

x(1)
0,(1,1,k)

0=

Figura 4.6 - Denominacao dos cortes paralelos ao eixo Y

- Variagao da temperatura 8, com o tempo

No gréafico a sequir, foi representada a variacdo da temperatura 6,

com o tempo em 6 pontos. Esses pontos sdo os ultimos pontos de cada
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Ternperatura[K]

375

370

365

3680

385

340

345

340
1]

corte da fig. 4.5 e com isso podemos representar a variagdo da temperatura

de saida do fluido quente em coordenadas diferentes do espaco de saida.

TempH x Tempo em cortes parelelos ao fluxo do fluido quente

TalZL
Tal4L
TalEBL
TalEL
T na saida

Tempo[s]

Figura 4.7 - Resposta de Th no tempo em diferentes pontos

Nesse gréafico, podemos notar que o comportamento geral do sistema
nao se diferencia muito do comportamento encontrado por Beato e Monte
(2012) para os outros modelos de trocadores. E notavel que nos instantes
iniciais exista uma queda brusca na temperatura do fluido quente devido a
diferenca grande de temperaturas do fluido quente e da parede. Essa queda
brusca inclusive faz com que a temperatura fique por alguns instantes
abaixo da temperatura de regime do sistema. Apds esse periodo de queda,

o sistema ird bem mais lentamente para uma temperatura de regime.
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Temperatura[k]

303

302

301

300

289

293

297

298

295

294

293
0

Também é importante notar a diferenca de temperatura entre os
pontos medidos. Como era de se esperar, 0 ponto medido mais proximo a
entrada do fluido frio (a curva amarela) ird entrar em regime em uma
temperatura ligeralmente menor, que € crescente conforme o ponto medido

se afasta da entrada do fluido frio.

- Variagao da temperatura 6, com o tempo

No gréfico a seguir, foi representada a variacdo da temperatura 6,
com o tempo em 6 pontos. Esses pontos sdo os ultimos pontos de cada
corte da fig. 4.6 e com isso podemos representar a variacdo da temperatura
de saida do fluido quente em coordenadas diferentes do espaco de saida.

TempC x Tempo em cortes parelelos ao fluxo do fluido frio

T T T ! T T

T zero
: Tal2L a
: Tan4L
Ta0B"L
TalsL | _|
: T na saida

I | | 1 i I | 1 |

1 2 3 4 2 53 7 a g 10

Tempo[s]

Figura 4.8 - Resposta de Tc no tempo em diferentes pontos
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Assim como para o fluido quente, a resposta geral do fluido frio também
tem um formato parecido com o de outros modelos de trocador. Em um
primeiro momento, um aumento rapido da temperatura devido a diferenca
de temperaturas entre o fluido frio e a parede e apds essa faixa, uma
variacao gradual até as temperaturas entrarem em regime.

Enfim, nesse grafico também aparece uma diferenca de temperaturas de
regime encontrada para cada ponto considerado, em fungdo da distancia da
entrada do fluido quente. Nesse grafico, a curva em amarelo representa o
ponto medido mais proximo a entrada do fluido quente e, conforme o
esperado, entra em regime em uma temperatura maior que a dos outros

pontos.

- Variagado da temperatura 6,, com o tempo

Para a representacdo da temperatura da parede, serdo apresentados
dois graficos distintos. No primeiro, serd apresentada a resposta da
temperatura com o tempo medidas nos pontos da fig. 4.5 (em cortes
paralelos ao eixo x). No segundo grafico, serdo representadas medidas

feitas nos pontos da fig. 4.6 (em cortes paralelos ao eixo y)
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Ternperatura[K]

325

320

35

310

305

300

TermpW x Tempo em cortes parelelos ao fluxo do fluido guente

— T zem
Tal.2L
Ta0.4"L
TalBL

—TalfL

T na saida

Termpo[s]

Figura 4.9 - Resposta de Tw no tempo em cortes paralelos ao eixo X

37



Temperatura[K]

335

330

325

320

315

10

303

300
1]

Tempwy x Tempo em cortes parelelos ao fluxo do fluido frio

Tempo[s]

Figura 4.10 - Resposta de Tw no tempo em cortes paralelos ao eixo Y

Nesses dois graficos, fica claro que a temperatura 6,, ndo sofre de uma
diferenca brusca nos instantes iniciais, diferente do que acontece com os
dois fluidos. Isso nos indica que é a temperatura da parede que tem a maior
infléncia no comportamento de todo o sistema. Enquanto a temperatura de
um fluido difere bastante da temperatura da parede, essa ira sofrer uma
variagao grande da temperatura.

- Comparacao das temperaturas e resposta no tempo

Nesse ultimo gréfico foi feita a comparacao das temperaturas 6,, 6,, € 6,

em um unico grafico. Nesse caso, foi considerada as temperaturas medidas
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Temperatura[k]

somente no ultimo ponto da malha (com i = N e j = M; também representado
pelas curvas roxas dos gréaficos anteriores). Nesse grafico podemos ver o

comportamento das trés temperaturas em conjunto para uma melhor

comparagao.
TempC/TempWWTernpH % Ternp na saida do trocador
380 r 1 ; T ! ! I 1 :
' : : : : : : Termp Wy
: : ; 5 : ; § : Temp C
A0 EEIEESERTRRRY: SERTERSRTRRTEE .............. .............. .............. IR EERRTERTEREEE ...... TEI’T’Ip H H
BEOH e ............... .............. .............. . .............. .............. ............ _
350 ......... .............. ............... .............. .............. ............... ............ |
o .............. .............. .............. .............. .............. .............. .............. .............. ............. |
330 P ........................................................................ —
320 b T e ....................................................................... —
310 S ....................................................................... —
1 U ....................................................................... —
290 | | | | | | | | |
o 1 2 3 4 5 G 7 g ) 10

Tempo[s]

Figura 4.11 - Comparacéo de Th, Tw e Tc no tempo.

Na fig. 4.11 podemos notar que 0 sistema entra em regime em pouco
menos de 6s. Como pode ser visto nos graficos anteriores, a curva roxa
(sempre medida no ponto mais distante da origem) € sempre a mais
demorada para entrar em regime. Como esse ultimo grafico sempre leva em
consideracdo essas medidas, podemos afirmar que esse sera o tempo
maximo para que o sistema todo entre na temperatura final em regime

permanente.
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4.3.CONDICOES FINAIS

No instante final de simulacédo (T = 10s), quando o sistema ja estd em

regime, os mapas de temperaturas seréo conforme os seguintes:

- Temperatura do fluido quente (8,,) na superficie de troca

Temperatura Th no instante final

375

370

Lo} ]
o
o

Lo} ]
(o))
[}

Lo} )
L3
Ly}

Temperatura Th [K]

Coordenada Y [m] 0 0

Coordenada X [m]

Figura 4.12 - Mapa de Th no instante final da simula¢éo

Representando essa mesma curva da fig. 4.11 em cortes conforme as
linhas coloridas da fig. 4.5, podemos representar as temperaturas do fluido

frio no ultimo instante de simulacéo da seguinte maneira
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Temperatura[K)

Cortes do mapa de Temp C no ultimo instante de simulagéo / Temp C x Distéancia da entrada (Y)

304 T 1 T T T T T
3021 _
fl e
Temperatura decresce com x e [

300+ % = 0 . /.-"" -
298 R—— f/ i
296 |- A ,,// |
294 -
292 | ] ] i 1 i |

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Distéancia Y [m]

Figura 4.13 - Cortes do mapa de Th no instante final

Como ja esperado, mesmo em regime, pontos mais proximos a

entrada do fluido frio (curva vermelha) possuem as menores temperaturas.
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Cortes do mapa de Temp H no ultimo instante de simulag&o / Temp H x Distancia da entrada ()

375 T | T T T T T

370 .
"'?‘H--\.“‘x
365 I
L _;‘M | -
§ 360 - . i “H‘“‘H“ -
5 \
Temperatura cresce com y \H
=) : ' ‘“““ma |
H‘mn
_—— Ny
350+ -
345 | | | | 1 | |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Distancia X [m]

Figura 4.15 - Cortes do mapa de Th no instante final

Também como esperado, pontos medidos préximos a entrada do fluido

guente (curva vermelha) possuem temperaturas mais altas em regime.
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- Temperatura da parede (6,,) na superficie de troca

Temperatura Tw no instante final

340
330
320

310

Temperatura Tw [K]

Coordenada Y [m] 0 0

Coordenada X [m]

Figura 4.16 - Mapa de Tw no instante final

Como nos outros casos, podemos representar esse mapa em cortes
na direcéo X
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Temperatura[K]

Cortes do mapa de Temp W no ultimo instante de simulacéo / Temp W x Distancia da entrada (X)

338

T T T T T T !

334

332

L
Cad
(=]

(]
]
Lo

L3
ka
(o3

324

322

‘Temperatura cresce com y T

318

0.05 0.1 015 0.2 0.25 03 0.35
Distancia X [m]

Figura 4.17 - Corte do mapa de Tw no instante final (Direcao x)

Assim como podemos representar com cortes na direcao y
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Figura 4.18 - Corte do mapa de Tw no instante final (Direcao y)

4.4. INFLUENCIA DE PARAMETROS

Nessa secdao, incluiremos algumas comparacoes de respostas variando
alguns dos parametros da tabela 4.1. Essas relacfes serdo encontradas a
partir de um grafico de comparacdo das trés temperaturas em funcdo do
tempo no ponto final da malha (como na fig. 4.11) dado que este foi o grafico
gue nos trouxe mais informacdes relevantes para a resposta do sistema.

Nos graficos a seguir, trés curvas de mesma cor representam as
temperaturas da parede, fluido frio e fluido quente, calculados com um

parametro. Variagédo da cor das curvas indica a variagdo do parametro.
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- Variagao de hy,
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Figura 4.19 - Comparacéo do resultado com hh — Variagdo de 800 a 4500 W/m2K

A variacao de h;, visivelmente implica bastante nas temperaturas de
regime. Embora o comportamento do sistema ainda tenha a mesma forma —
Queda brusca inicial de 6, e aumento rapido de 6, seguido de uma variacao
lenta até o regime — as temperaturas finais sdo claramente dependentes do
parametro hy,.

A direcao das setas na fig. 4.19 representa a direcdo de aumento do
parametro. Por exemplo, para 6, a curva vermelha representa o menor valor
do parametro h, enguanto a curva preta representa o maior valor do
parametro. Vemos entdo que a temperatura em regime de 6,, aumenta com

h,, enquanto as temperaturas 6,, e 8. diminuem.
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Figura 4.20 - Comparacéo do resultado com hc — Variacdo de 800 a 4500 W/m2K

Assim como na comparagdo de h;,, vemos que O parametro h,
também influencia bastante as temperaturas em regime do sistema apesar
de também manter a mesma forma. Nesse caso fica visivel uma variacdao do
tempo de resposta — o tempo que o sistema leva para entrar em regime.
Para um menor parametro h. (curva vermelha), o tempo de resposta é
inclusive maior que o tempo total de simulacao enquanto para um valor
maior de h,.

Por fim, notamos que a temperatura em regime de 6. aumenta com o

valor de h, enquanto as temperaturas 6,, e 6, diminuem com o parametro.
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Figura 4.21 - Comparacéo do resultado com Cw

Para variar o parametro C,,, foram utilizados alguns valores de calor

especifico de alguns materiais sélidos conforme a tabela 4.2.

Tabela 4.2 - Valores variados de Cw [J/(kg. K)] para alguns sélidos

Estanho | 225
Cobre 385
Aco 450
Silicio 753
Aluminio | 897
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Como fica visivel, o parametro C,, ndo influencia na temperatura de
regime como 0sS outros parametros ja vistos, mas tem grande influéncia no
tempo de resposta do sistema. Apesar da variacdo inicial de 6, e 6,
continuem as mesmas, valores mais baixos de C,, fazem com que o sistema

responda muito mais rapido as variacdes de temperatura.

- Variagao das velocidades u, e uy

Temp Hf Termp W/ Temp C x tempo com diversos Uc

| 1 I | | I
g G 7 g 4
Tempa[s]

Figura 4.22 - Comparacéo do resultado com uc — Variagdo de 1 a5 m/s
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Figura 4.23 - Comparacéo do resultado com uh — Variacdo de 1 a 4 m/s

Nas fig. 4.22 e 4.23 podemos ver que a velocidade de um dos fluidos
basicamente so ir4 alterar a taxa de troca de calor no instante inicial de
troca, onde ocorre a variagado brusca de 6, e 6.. A variacdo da velocidade u,
do fluido frio ira alterar principalmente a taxa de troca de calor do fluido frio
para a parede enquanto a variacao de uy ira principalmente aumentar a taxa
de troca do fluido quente com a parede. Embora exista uma minima
influéncia de u. na resposta de 6, e de u, em 6, essa variagcdo €

consideravelmente pequena.
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4.5. RESPOSTA DO SISTEMA A VARIACOES NAS ENTRADAS

Por fim foram realizadas simulacbes e andlises da resposta do
sistema estudado quando introduzidas entradas variaveis no tempo. O foco
dessa etapa foi estudar como € dada a resposta temporal da temperatura na
saida do fluido quente quando ocorrem variacdes na entrada do fluido frio.

As analises foram tomadas dessa maneira devido ao funcionamento
desse tipo de equipamento. Em grande parte das aplicacbes, trocadores
desse tipo tém como objetivo principal reduzir a temperatura de um
elemento quente através de um fluido refrigerado até uma temperatura
adequada. Aqui sera estudado como serd influenciada a capacidade de
troca no elemento quente quando ocorre um suposto problema ou variacao

inesperada da temperatura em que o fluido frio entra no trocador.
- Variacao periédica da temperatura do fluido frio 6,

Foram realizadas algumas simulacdes para estudar a resposta da
temperatura do fluido quente 6, quando ocorrem variacdes periddicas de
forma senoidal na entrada do fluido frio. Como visivel nas fig. 4.24, 4.25 e
4.26, existe um atraso de fase entre a resposta da temperatura do fluido
guente e a do fluido frio. Vale notar que os graficos mostram a saida do
fluido frio que ja possuem outro pequeno atraso da entrada. A variacdo da

temperatura da entrada do fluido frio foi simulada como sendo:
Bxmxt
Oce = 0.0+ Ax*cos (T) (4.1)

Nesse tépico, os termos A e B foram tomados como:
A=5
B=38
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Figura 4.24 — Temperaturas na saida com varia¢do senoidal em Tc
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Figura 4.25 - Temperaturas na saida com variacao senoidal em Tc - Baixa frequéncia
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Figura 4.26 - Temperaturas na saida com variagédo senoidal em Tc - Alta frequéncia

Por ser um sistema de resposta razoavelmente lenta, os graficos
apresentam resultados ja esperados. Em alta frequéncia da entrada, a saida
gque estamos estudando apresenta amplitudes insignificantes dado que néo
tem tempo para variagdes antes do sinal de entrada voltar a mudar de fase.
Na simulacdo de baixa frequéncia vemos que a amplitude do sinal de saida
consegue alcancgar um valor consideravelmente maior e é visivel o atraso de
fase.

Em seguida, foram realizadas novas simulacbes para estudar a
influéncia da amplitude do sinal de entrada. Foram realizados testes criando
variagbes também senoidais com amplitudes variando de 2 a 40°C. As
amplitudes alcangadas no sinal de resposta foram encontrados conforme a
tabela 4.3:
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Tabela 4.3 — Variacdes de amplitude do sinal de saida Th

Variagao de amplitude de Tc

Tc_e =Tc_zero + A*cos(pi*B*t/T)
H = amplitude de Th_s

A B H
1 8 0,18
2 8 0,33
4 8 0,52
5 8 0,85
7 8 1,17
8 8 1,36
10 8 1,72
15 8 2,6
20 8 3,46

- Variagao da temperatura do fluido frio 8, com uma rampa

Em seguida foi realizada uma nova simulacdo considerando um
suposto sistema de refrigeracdo que para de funcionar e gera um aumento
constante no tempo da temperatura de entrada do fluido frio. Isso se
aproxima do comportamento de um equipamento que temporariamente para
de funcionar devido a uma queda de energia ou problema temporéario

similar.
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TempCiTempW/TempH x Temp na saida do trocador
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Figura 4.27 - Resposta das temperaturas na saida com uma entrada rampa temporaria em
Tc

Como no tépico anterior, € possivel perceber que o aumento da
temperatura de saida do fluido quente é dado de uma maneira bem mais
lenta, com amplitude menor e um atraso notavel comparado ao sinal de
entrada. Também foi possivel medir que o tempo de retorno para a

estabilidade apo6s o sinal voltar ao padrdo € bem préximo ao tempo de
estabilizacao inicial do sistema.
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5. MODELO DE TROCADOR COM MULTIPLOS PASSES

Até este ponto foi estudado o comportamento de uma Unica célula de
um trocador de calor considerando um Unico passe dos fluidos n&o
misturados. Equipamentos reais em geral possuem sistemas de multiplos
passes de fluidos que permite um melhor aproveitamento da diferenca de
temperaturas existente entre os fluidos nas suas respectivas saidas.

Para melhorar o modelo apresentado anteriormente e tentar
aproxima-lo de um equipamento mais pratico, foi desenvolvido uma nova
linha de cédigo que permite considerar uma sequéncia de células colocadas

em sequéncia considerando algumas hipoteses:

- Nessa etapa, foram considerados somente passes adicionais do
fluido frio. Como pode ser visto no exemplo da figura 5.1, foram alinhadas 4

células e é possivel ver a direcdo do escoamento considerada.

Figura 5.1 - Modelo fisico de um conjunto de células

- Entre cada uma das células, o fluido quente passa diretamente,
mantendo a distribuicdo de temperaturas alinhadas ao escoamento. Ja o
fluido frio, ao passar de uma célula para a seguinte necessita de uma
variagdo na orientagdo do escoamento. Isso ird forcar uma mistura que torna

irrelevante a distribuicdo de temperaturas na saida da primeira célula. Sera
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considerado entdo que ele entra na segunda célula com uma distribuicédo de
temperaturas uniforme, igual a temperatura média do ultimo ponto de calculo
da célula anterior.

- Nao seré considerada qualquer troca de energia fora das células,
mesmo que o fluido frio tenha que sair da regido considerada para a

inversao de direcao.

5.1. ADAPATACOES NO MODELO ORIGINAL

Para resolver o problema de varios passes, foram feitas algumas
alteracbes no modelo original apresentado anteriormente. O modelo
matematico encontrado na equacéo 3.9 ndo sofrera alteracbes, porém sao
necessarias mudancas no modelo aplicado no sistema computacional.

Essas alteragdes séo listadas a seguir

Figura 5.2 - Representacéo dos varios passes w

- Como é mostrado na figura 5.2, temos um total de W passes (cada
nomeado como w = 1, 2, 3... W). No modelo discreto original tinhamos M
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pontos de calculo na direcdo y para cada passo no tempo, no novo sistema
teremos um total de W*M.

- Variavel u, com sentido dependente do passe w. No modelo original
ela era constante positiva na direcdo de x ja nessa adaptacdo ela varia

conforme a equacio:
u.(w) = u (-7 (5.1)

- Condi¢des de contorno da temperatura do fluido frio nas entradas do
modelo variando também com w. Devido a variagcdo do sentido de u., 0S
pontos de entrada do modelo irdo variar entre os pontos de coordenada
i = 1, para 0s passes comw impar e i = N para 0S passes com w patr.

Colocando a variavel w diretamente na coordenada j, teremos uma
nova variavel j=1,2,3.. P,P+1.. 2P .. MP. Assim, podemos definir as

distribuicdes nas entradas como sendo:

w=1-0.(11:P) = ¢ zero
w =k,impar - 6.(1,(k—1)*P + 1:K x P) = Média[0,.(1,(k —2)* P+ 1: (k— 1) *x P)
w=k,par - 6.,(N,(k—1)*P + 1: K * P) = Média[0.(N,(k—2)«*P +1: (k—1) * P)

5.2. SIMULACOES COM DIVERSOS PASSES

Inicialmente foram feitas algumas simulagdbes com o0s mesmos
parametros das simulagdes originais somente acrescentando um nudmero
maior de passes. Na primeira simulacdao, sao comparadas as temperaturas
de saida dos dois fluidos e da parede para uma simulacdo com 1, 2 e 4

passes do fluido frio.
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Figura 5.3 - Comparacéo dos resultados com diversos passes

Como ¢é possivel ver na figura 5.3, existe uma queda consideravel na
temperatura de saida do fluido quente para passes adicionais. Também &
possivel notar uma distor¢do no formato das curvas de quatro passes dada a
proximidade das temperaturas.

Devido a essa distorcao, foi optado por utilizar uma area de troca
menor do que a utilizada nas simulagdes anteriores para observar melhor
como o sistema responde com maiores nimeros de passes. Originalmente
foi utilizada uma superficie de troca com dimensdes 40x40mm. Nas
simulacdes a seguir sera considerada uma area de 20x20mm.

Na figura 5.4 a seguir podemos ver uma comparacao do resultado de
um trocador 20x20mm variando o nimero de passes w de 1 a 4. Na tabela
5.1 estdo os valores das temperaturas nos pontos finais da simulagao.
Quando transformados em um grafico (Figura 5.5), podemos ver melhor

como as temperaturas finais se modificam com os passes.
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Figura 5.4 - Comparacéo dos resultados de 1 a 4 passes

Como era esperado, vemos que existe uma melhora na eficiéncia do
trocador conforme se aumenta o nimero de passes. Ao mesmo tempo, a

diferenca entre a melhora da eficiéncia diminua a cada passe adicional.

Tabela 5.1 - Temperaturas finais por nimero de passes

Passes Th Tw Tc
1 366,31 327,46 295,36
2 360,15 325,31 297,21
3 355,23 327,19 306,94
4 351,40 328,46 314,58
5 348,81 329,48 321,00
6 346,22 329,94 325,73
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Figura 5.5 - Grafico da variagdo da Temperatura final com os passes

Outro resultado notavel € que a temperatura alcancada na saida de
T, na condicdo de trocador de area 20x20mm com 4 passes € bastante
proxima do que o alcancado no trocador de 40x40mm sem passes

adicionais (Ambos equipamentos com areas de troca total iguais)
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6. CONCLUSOES

Com o modelo encontrado e as simulacdes realizadas, podemos
chegar a uma concluséo inicial clara. Quando comparada a resposta do
trocador em fluxo cruzado com a de um trocador de outro tipo — Corrente
paralela (fig. 6.1) ou contracorrente - fica visivel que a resposta ndo se difere
tanto entre os modelos. Mesmo com as diferencas construtivas, o sistema
responde de maneira simular em todos os casos. Inicialmente uma variagéo
rapida das temperaturas devido as grandes diferencas de temperaturas
entre os fluidos e a parede e em seguida, uma variacdo lente até se chegar

ao regime.

Variaggo da temperatura com o tempo
3?3 T T | | T T |
: : ; : : Fluida quente

gyl ...................... SR ....................... s ...................... U ..................... |

FFIH ...................... ....................... ....................... ....................... ...................... R ..................... |

Temperatura [K]

[
~]
=
on
I
|

366.5

0 0.5 1 1.5 2 25 3 35 4
Passos de tempo x10°

Figura 6.1 - Resposta de Temp H em um trocador de corrente paralela (BEATO, MONTE,
2012)
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Para que a resposta desse tipo de trocador ficasse
consideravelmente diferente da resposta de um trocador de fluxo paralelo,
foi necessario um aumento significativo da dimensdo do trocador. Nas
simulagbes mostradas nesse trabalho, foi utilizado um trocador de
dimensdes basicas de 0,4m x 0,4m. Mapas de temperatura mais complexos
s6 foram encontrados quando utilizado trocadores de dimensfes muito
maiores. Levando em consideracdo que isso € um modelo tedrico e
trocadores reais com modelo fisico proximo ao estudado até aqui nao
chegam a possuir grandes dimensdes, é apropriado dizer que esses

resultados diferentes ndo chegam a se repetir em um problema real.

Quanto aos parametros do problema, foram encontrados dois
parametros principais que regem o sistema. Os coeficientes de troca de
calor h;, e h., que geram diferencas significativas nas temperaturas de
regime e o calor especifico da parede C, que gera variacbes do tempo de
resposta do sistema. Embora ndo tenha sido feita uma comparacdo da
variacdo da massa da parede m,, € possivel afirmar pelo modelo
matematico encontrado que esta terd um efeito de magnitude igual a
variacéo de C,,.

Por fim, € importante deixar claro que os modelos utilizados nesse
trabalho ainda podem ser complementados. No modelo inicial, foi feita uma
hipotese de que no escoamento somente as temperaturas iriam variar no
espaco. Isso acaba por tornar o modelo matematico bastante limitado, sé
sendo possivel seu uso com superficies de troca como placas planas,
impedindo o modelo de ser adaptado para trocadores de calor com tubos e
outros modelos. Outra possivel adicdo nesse problema € um avan¢o na
programacao para incluir passes dos dois fluidos na mesma simulagao, mas
iISSO necessitaria uma programacao mais complicada além de um tempo de
calculo inconveniente, considerando que algumas simulacdes realizadas

nesse trabalho ja consumiram um tempo razoavel que ao mesmo tempo que
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atrasava a analise, dificultava a solucdo de problemas dada a espera

necessaria entre cada tentativa de simulacéo.
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APENDICE A - Linhas de comando da simulacao (MATLAB)

clear all

%% Variaveils do escoamento

hh 2800; % W/m?.K
hc = 3100;

Ch = 2200; % J/kg.K
Cc = 4180;
Cw = 900; % Aluminio %

mh = 0.3; % kg/s
mc = 0.4;

Mw = 0.002*0.4*0.4*2700; % kg

uh = 2; % m/s
uc = 3;

Lx = 0.4; % m

Ly = 0.4;

Thzero = 273+100; % K
Tczero = 273+20;
Twzero = 273+30; %%

%% Constantes de calculo

S = Lx*Ly; % m?

E = (hh*S*uh)/ (mh*Ch*Lx) ;
F = (hh*S)/ (Mw*Cw) ;

G = (hc*S)/ (Mw*Cw) ;

H = (hc*S*uc)/ (mc*Cc*Ly) ;

T = 10.0; % s

DeltaT = 0.0002; % s
DeltaX = 0.005; % m
DeltaY = 0.005; %%

%% Pontos de céalculo

= 0:DeltaX:Lx; x1 O:DeltaX: (Lx - DeltaX);
y = 0:Delta¥Y:Ly; yl = 0:Delta¥: (Ly - DeltaY);

b
|

t = 0:DeltaT:T;
N = size(x,2);
M = size(y,2);
P = size(t,2);



ThetaH = zeros (N,M); AuxH = ThetaH; Malhah2 = ThetaH; Malhah3
ThetaH; Malhah4 = ThetaH; Malhah5 = ThetaH; Malhah6 = ThetaH;
Malhah7 = ThetaH; Malhah8 = ThetaH; Malhah9 = ThetaH;

ThetaW = zeros (N,M); AuxW = ThetaW; Malhaw2 = ThetaW; Malhaw3
ThetaW; Malhaw4 = ThetaW; Malhaw5 = ThetaW; Malhaw6 = ThetaW;
Malhaw7 = ThetaW; Malhaw8 = ThetaW; Malhaw9 = ThetaW;

ThetaC = zeros (N,M); AuxC = ThetaC; Malhac2 = ThetaC; Malhac3
ThetaC; Malhac4 = ThetaC; Malhac5 = ThetaC; Malhac6 = ThetaC;
Malhac7 = ThetaC; Malhac8 = ThetaC; Malhac9 = ThetaC;%%

Mwl = zeros (N-1,M-1); Mw2 = Mwl; Mw3 = Mwl; Mw4 = Mwl; Mwb = Mwl;
Mw6 = Mwl; Mw7 = Mwl; Mw8 = Mwl; Mw9 = Mwl; Mwf = Mwl;
Mhl = zeros (N-1,M-1); Mh2 = Mwl; Mh3 = Mwl; Mh4 = Mwl; Mh5 = Mwl;
Mh6 = Mwl; Mh7 = Mwl; Mh8 = Mwl; Mh9 = Mwl; Mhf = Mwl;
Mcl = zeros (N-1,M-1); Mc2 = Mwl; Mc3 = Mwl; Mc4 = Mwl; Mc5 = Mwl;
Mc6 = Mwl; Mc7 = Mwl; Mc8 = Mwl; Mc9 = Mwl; Mcf = Mwl;

tl = 1; t2 = 1+(P-1)*0.02; t3 = 1+(P-1)*0.05; t4 = 1+(P-1)*0.075; t5

1
= 1+(p-1)*0.1; t6 = 1+(P-1)*0.2; t7 = 1+(P-1)*0.4; t8 = 1+(P-1)*0.5;
t9 = 1+(P-1)*0.7;

%% Condigdes iniciais e condigdes de contorno

ThetaH(:,:) = Thzero;
ThetaW(:,:) = Twzero;
ThetaC(:,:) = Tczero;

Malhawl = ThetaW;

Malhacl = ThetaC;
Malhahl = ThetaH;
%% Calculos
s =1;
for s=1:P
AuxH = ThetaH;
AuxW = ThetaW;
AuxC = ThetaC;
for j=2:M
for 1i=2:N

ThetaH (i, 3) AuxH (i, J) + DeltaT* ((-1)*uh* (AuxH (i,])-
AuxH (i, j- l))/(DeltaX) - (E* (AuxH (i, ]J)-AuxW(i,3)))):

ThetaW(i,j) = AuxW(i,j) + DeltaT* (F* (AuxH(i,7j)-AuxW(i,]j))-
G* (AuxW (i, J) AuxC 3)))
ThetaC (i ) = AuxC(i,J) + DeltaT* ((-1)*uc* (AuxC(i,]j)-
AuxC(i—l,j))/(DeltaY) - (H* (AuxC (i, J) -AuxW(i,3)))):
end

end

o)

% funcdes de temp no tempo em pontos diversos
Tfhl(s) = ThetaH(1l,M-1);
Tfh2 (s) ThetaH(0.2* (N-1),M-1);
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Tfh3(s) = ThetaH(0.4*(N-1),M-1
Tfh4 (s) = ThetaH(0.6* (N-1),M-1
Tfh5(s) = ThetaH(0.8* (N-1),M-1
Tfhf(s) = ThetaH(N-1,M-1);
Tfcl(s) = ThetaC(N-1,1);
Tfc2(s) = ThetaC(N-1,0.2* (M-1)
Tfc3(s) = ThetaC(N-1,0.4* (M-1)
Tfcd (s) = ThetaC(N-1,0.6* (M-1)
Tfc5(s) = ThetaC(N-1,0.8* (M-1)
Tfcf(s) = ThetaC(N-1, (M-1));
Tfwl (s) = ThetaW(N-1,1);

Tfw2 (s) = ThetaW(N-1,0.2* (M-1)
Tfw3(s) = ThetaW(N-1,0.4* (M-1)
Tfwd (s) = ThetaW(N-1,0.6* (M-1)
Tfw5(s) = ThetaW(N-1,0.8* (M-1)
Tfwf (s) = ThetaW(N-1, (M-1));
Tfw 1(s) = ThetaW(l,M-1);

Tfw 2(s) = ThetaW(0.2* (N-1),M-
Tfw 3(s) = ThetaW(0.4* (N-1),M-
Tfw _4(s) = ThetaW(0.6*(N-1),M-
Tfw 5(s) = ThetaW(0.8*(N-1),M-
Tfw f(s) = ThetaW(N-1,M-1);

% Malhas em pontos do tempo

ThetaW; Malhac?2

Malhaw3 = ThetaW; Malhac3

Malhaw4 = ThetaW; Malhaci4

Malhawb = ThetaW; Malhac5

Malhaw6 = ThetaW; Malhac6

Malhaw7 = ThetaW; Malhac7

Malhaw8 = ThetaW; Malhac8

if s == t2
Malhaw2?2 =
end
if s == t3
end
if s == t4
end
if s == t5
end
if s == to
end
if s == t7
end
if s == t8
end
if s == t9

Malhaw9 = ThetaW; Malhac9

end

end

%% Correcdo dos graficos de malha

ThetaC;

ThetaC;

ThetaC;

ThetaC;

ThetaC;

ThetaC;

ThetaC;

ThetaC;

Malhah?2

Malhah3

Malhahi4

Malhahb

Malhah6

Malhah?7

Malhah8

Malhah9

ThetaH;

ThetaH;

ThetaH;

ThetaH;

ThetaH;

ThetaH;

ThetaH;

ThetaH;
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for i=1:N-1
for j=1:M-1

Mwl (i, j)=Malhawl (i+1,j+1); Mcl (i, j)=Malhacl (i+1,3+1);
Mhl (i, j)=Malhahl (i+1,3+1);

Mw2 (i, j)=Malhaw2 (i+1, j+1); Mc2(i,j)=Malhac2(i+1,j+1);
Mh2 (i, j)=Malhah2 (i+1,j+1);

Mw3 (i,3j)=Malhaw3 (i+1,j+1); Mc3(i,j)=Malhac3 (i+1,3+1);
Mh3 (i, j)=Malhah3 (i+1,3+1);

Mwé (i, j)=Malhawd (i+1,j+1); Mc4 (i, j)=Malhacd (i+1,3+1);
Mh4 (i, j)=Malhah4 (i+1,j+1);

Mw5 (i, j)=Malhaw5 (i+1,j+1); Mc5(i,j)=Malhac5(i+1,3+1);
Mh5 (i, j)=Malhahb5(i+1,3+1);

Mw6 (i,3)=Malhaw6 (i+1,j+1); Mc6(i,j)=Malhacé6 (i+1,J+1);
Mh6 (i, 3)=Malhah6 (i+1,j+1);

Mw7 (i,3j)=Malhaw? (i+1,j+1); Mc7(i,]j)=Malhac7 (i+1,3+1);
Mh7 (i, j)=Malhah7 (i+1,3+1);

Mw8 (i,j)=Malhaw8 (i+1,j+1); Mc8(i,j)=Malhac8(i+1l,j+1);
Mh8 (i, j)=Malhah8 (i+1,j+1);

Mw9 (i,3)=Malhaw9 (i+1,j+1); Mc9(i,j)=Malhac9 (i+1,3+1);
MhO (i, j)=Malhah9 (i+1,3+1);

Mwf (i,J)=ThetaW(i+1l,j+1); Mcf(i,j)=ThetaC(i+1,3+1);
Mhf (i, j)=ThetaH (i+1,j+1);

end

end

o

% GERACAO DE GRAFICOS

% 0 - graficos no tempo

% 1 - graficos da supef Tw no tempo
% 2 - graficos da supef Th no tempo
% 3 - graficos da supef Tc no tempo

fprint = 5;

$Grafico de temp/t em seis cortes paralelos ao escoamento + surface
da temp
$final

if fprint == 0

figure (1)

plot (t,Tfhl, 'r");
hold on;

plot (t,Tfh2, 'y")
plot (t,Tfth3, 'g")
plot (t,Tfh4, 'c");
plot (t, Tfh5, 'b")
plot (t, Tfthf, 'm")
grid on;

xlabel ('Tempo[s] ")

ylabel ('Temperatural[K]")

title('TempH x Tempo em cortes parelelos ao fluxo do fluido
quente') ;

legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L"'",
'T na saida');

hold off;

saveas (1, 'ThetaH tempo cortesTf', 'png');

figure (2)
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plot (t,Tfcl, 'r");
hold on;

plot (t,Tfc2,'y")

plot (t,Tfc3, 'g")

plot (t,Tfc4,'c");
plot (t,Tfc5, 'b")

plot (t,Tfcf, 'm")

grid on;

xlabel ('Tempo[s] ")

ylabel ('Temperatura[K]")

title('TempC x Tempo em cortes parelelos ao fluxo do fluido frio');

legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L",
'T na saida');

hold off;

saveas (2, 'ThetaC tempo cortesTf', 'png');

figure (3)

plot (t,Tfwl, 'r'");
hold on;

plot (t,Tfw2, 'y")

plot (t,Tfw3, 'g")

plot (t,Tfw4, 'c');
plot (t,Tfw5, 'b")

plot(t,Tfwf, 'm")

grid on;

xlabel ('Tempo[s] ")

ylabel ('Temperatura[K]")

title('TempW x Tempo em cortes parelelos ao fluxo do fluido frio');

legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L"'",
'T na saida');

hold off;

saveas (3, 'ThetaW tempo cortes Y Tf', 'png');

figure (4)
plot(t,Tfw 1,'r");
hold on;

plot (t,Tfw 2, 'y")
plot(t,Tfw 3, 'g")
plot(t,Tfw 4,'c");
plot(t,Tfw 5, 'b")
plot(t,Tfw £, 'm")
grid on;

xlabel ('Tempo[s] ")

ylabel ('Temperatura[K]")

title('TempW x Tempo em cortes parelelos ao fluxo do fluido
quente') ;

legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L"'",
'T na saida'):;

hold off;

saveas (4, 'ThetaW tempo cortes X Tf', 'png');

figure (5)

plot (t,TfwEf, "'k'");
hold on;

plot (t,Tfct, 'b'");
plot (t, Tfthf, 'r");
grid on;

xlabel ('Tempo[s] ")
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ylabel ('Temperatura[K]")

title ('TempC/TempW/TempH x Temp na saida do trocador');
legend('Temp W', 'Temp C', 'Temp H');

saveas (5, 'Comparacdo_temps', 'png');

end

$Surface em 10 passos do tempo para Tw

if fprint == 1

figure (1)
surf (x1,yl,Mwl) ;

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Tw [K]');

title ('Temperatura Tw no instante t=0s')

axis ([0 0.4 0 0.4 290 3451);
saveas (1, 'ThetaW tempo M1', 'png');

figure (2)

surf (x1,yl,Mw2) ;

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tw [K]');

title ('Temperatura Tw no instante t=0.2s')

axis ([0 0.4 0 0.4 290 345]);
saveas (2, 'ThetaW tempo M2', 'png');

figure (3)

surf(xl,yl,Mw3);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tw [K]'");

title ('Temperatura Tw no instante t=0.5s"')

axis ([0 0.4 0 0.4 290 3451);
saveas (3, 'ThetaW tempo M3', 'png');

figure (4)

surf (x1,yl,Mwd);

grid on;

box on;

xlabel ('Coordenada X [m]'");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Tw [K]');

title ('Temperatura Tw no instante t=0.75s"')

axis ([0 0.4 0 0.4 290 345]);
saveas (4, 'ThetaW tempo M4', 'png');

figure (5)
surf (x1l,yl,Mw5);
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grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tw [K]'");

title ('Temperatura Tw no instante t=1ls')

axis ([0 0.4 0 0.4 290 345]);
saveas (5, 'ThetaW tempo M5', 'png');

figure (6)

surf (x1,yl,Mw6) ;

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tw [K]');

title ('Temperatura Tw no instante t=2s')

axis ([0 0.4 0 0.4 290 3451);
saveas (6, 'ThetaW tempo M6', 'png');

figure (7)
surf (x1l,yl,Mw7);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Tw [K]');

title ('Temperatura Tw no instante t=4s')

axis ([0 0.4 0 0.4 290 345]);
saveas (7, 'ThetaW tempo M7', 'png');

figure (8)

surf (x1,yl,Mw8) ;

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tw [K]');

title ('Temperatura Tw no instante t=5s')

axis ([0 0.4 0 0.4 290 3451);
saveas (8, 'ThetaW tempo M8', 'png');

figure (9)

surf (x1l,yl,Mw9);

grid on;

box on;

xlabel ('Coordenada X [m]'");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Tw [K]'");

title ('Temperatura Tw no instante t=7s')

axis ([0 0.4 0 0.4 290 3451);
saveas (9, 'ThetaW tempo M9', 'png');

figure (10)

surf (x1l,yl,Mwf);

grid on;

box on;

xlabel ('Coordenada X [m]"');
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ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tw [K]'");

title ('Temperatura Tw no instante final')
axis ([0 0.4 0 0.4 290 345]);

saveas (10, 'ThetaW tempo Mf', 'png');

end
$Surface em 10 passos do tempo para Th
if fprint ==

figure (1)
mesh (x1,yl,Mhl);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Th [K]');

title ('Temperatura Th no instante t=0s')

axis ([0 0.4 0 0.4 340 3751);
saveas (1, 'ThetaH tempo M1', 'png');

figure (2)

mesh (x1,yl,Mh2);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Th [K]');

title ('Temperatura Th no instante t=0.2s'")

axis ([0 0.4 0 0.4 340 3751);
saveas (2, 'ThetaH tempo M2', 'png');

figure (3)

mesh (x1,yl,Mh3);

grid on;

box on;

xlabel ('Coordenada X [m]'");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Th [K]'");

title ('Temperatura Th no instante t=0.4s")

axis ([0 0.4 0 0.4 340 3751);
saveas (3, 'ThetaH tempo M3', 'png');

figure (4)

mesh (x1,yl,Mh4);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Th [K]");

title ('Temperatura Th no instante t=0.7s')

axis ([0 0.4 0 0.4 340 3751);
saveas (4, 'ThetaH tempo M4', 'png');

figure (5)
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mesh (x1,yl,Mh5) ;

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Th [K]'");

title ('Temperatura Th no instante t=1ls')

axis ([0 0.4 0 0.4 340 3751);
saveas (5, 'ThetaH tempo M5', 'png');

figure (6)

mesh (x1,yl,Mho6);

grid on;

box on;

xlabel ('Coordenada X [m]'");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Th [K]');

title ('Temperatura Th no instante t=2s')

axis ([0 0.4 0 0.4 340 3751);
saveas (6, 'ThetaH tempo M6', 'png');

figure (7)
mesh (x1,yl,Mh7);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Th [K]'");

title ('Temperatura Th no instante t=4s')

axis ([0 0.4 0 0.4 340 375]);
saveas (7, 'ThetaH tempo M7', 'png');

figure (8)

mesh (x1,yl,Mh8);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Th [K]');

title ('Temperatura Th no instante t=5s')

axis ([0 0.4 0 0.4 340 3751);
saveas (8, 'ThetaH tempo M8', 'png');

figure (9)

mesh (x1,yl,Mh9);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Th [K]'");

title ('Temperatura Th no instante t=7s'")

axis ([0 0.4 0 0.4 340 3751);
saveas (9, 'ThetaH tempo M9', 'png');

figure (10)

mesh (x1,yl,Mhf);
grid on;

box on;
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xlabel ('Coordenada X [m]"');

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Th [K]');

title ('Temperatura Th no instante final')

axis ([0 0.4 0 0.4 340 3751);
saveas (10, 'ThetaH tempo Mf', 'png');

end

$Surface em 10 passos do tempo para Tc

if fprint ==

figure (1)

surf (xl,yl,Mcl);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]');

title ('Temperatura Tc no instante t=0s')

axis ([0 0.4 0 0.4 290 3101);
saveas (1, 'ThetaC tempo M1', 'png');

figure (2)

surf (x1l,yl,Mc2);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Tc [K]'");

title ('Temperatura Tc no instante t=0.2s'")

axis ([0 0.4 0 0.4 290 310]);
saveas (2, 'ThetaC tempo M2', 'png');

figure (3)

surf (x1,yl,Mc3);

grid on;

box on;

xlabel ('Coordenada X [m]'");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]');

title ('Temperatura Tc no instante t=0.5s")

axis ([0 0.4 0 0.4 290 3101);
saveas (3, 'ThetaC tempo M3', 'png');

figure (4)
surf (x1,yl,Mcd);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]'");

title ('Temperatura Tc no instante t=0.7s'")

axis ([0 0.4 0 0.4 290 3101);
saveas (4, 'ThetaC tempo M4', 'png');
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figure (5)
surf (x1,yl,Mc5);

grid on;

box on;

xlabel ('Coordenada X [m]"');

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]'");

title ('Temperatura Tc no instante t=1s')

axis ([0 0.4 0 0.4 290 3101);
saveas (5, 'ThetaC tempo M5', 'png');

figure (6)

surf (x1,yl,Mco6);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]');

title ('Temperatura Tc no instante t=2s')

axis ([0 0.4 0 0.4 290 3101);
saveas (6, 'ThetaC tempo M6', 'png');

figure (7)

surf (x1l,yl,Mc7);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]'");

title ('Temperatura Tc no instante t=4s')

axis ([0 0.4 0 0.4 290 3101);
saveas (7, 'ThetaC tempo M7', 'png');

figure (8)

surf (x1,yl,Mc8);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]'");

zlabel ('Temperatura Tc [K]');

title ('Temperatura Tc no instante t=5s')

axis ([0 0.4 0 0.4 290 3101);
saveas (8, 'ThetaC tempo M8', 'png');

figure (9)

surf (x1,yl,Mc9);

grid on;

box on;

xlabel ('Coordenada X [m]");

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]');

title ('Temperatura Tc no instante t=7s')

axis ([0 0.4 0 0.4 290 3101);
saveas (9, 'ThetaC tempo M9', 'png');

figure (10)
surf (x1,yl,Mcf);
grid on;
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box on;

xlabel ('Coordenada X [m]"');

ylabel ('Coordenada Y [m]");

zlabel ('Temperatura Tc [K]');

title ('Temperatura Tc no instante final')

axis ([0 0.4 0 0.4 290 3101);

saveas (10, 'ThetaC tempo Mf', 'png');
end
if fprint == 4
vhl = Mhf (1,:);
vh2 = Mhf (16, :);
vh3 = Mhf (32,:);
vh4 = Mhf (48,:);
vh5 = Mhf (64,:);
vh6e = Mhf (80, :);
figure (1)

plot(xl,vhl, 'r',x1,vh2,'y"',x1l,vh3,'g',x1,vh4,'c',x1l,vh5, 'b',x1,vhé6
m');

grid on;

xlabel ('Distancia X [m]");

ylabel ('Temperatural[K]");

title('Cortes do mapa de Temp H no ultimo instante de simulacéo /
Temp H x Distdncia da entrada (X)'):;

saveas (1, 'TempH cortes mapa final', 'png');
vcl = Mcf(:,1);
vc2 = Mcf(:,16);
ve3 = Mcf(:,32);
vcd = Mcf(:,48);
vecb = Mcf(:,64);
vc6e = Mcf(:,80);
figure (2)

plot(yl,vecl, 'r',yl,vc2,'y",yl,vc3,'g',yl,vcd,'c',yl,vch, 'b',yl,vco
m');

grid on;

xlabel ('Distancia Y [m]")

ylabel ('Temperatura[K]")

title('Cortes do mapa de Temp C no ultimo instante de simulacédo /
Temp C x Distdncia da entrada (Y)'):;

saveas (2, 'TempC cortes mapa final', 'png');
vwl = Mwf(:,1);
vw2 = Mwf (:,16);
vw3 = Mwf(:,32);
vwd = Mwf (:,48);
vwb = Mwf (:,064);
vwo = Mwf (:,80);
figure (3)

plot(yl,vwl, 'r',yl,vw2,'y',yl,vw3,"'g',yl,vw4d,'c',yl,vw5, 'b',yl,vwo6
m');

]
4

|l
4

]
14
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grid on;

xlabel ('Distancia Y
ylabel ('Temperatural[K]")

title('Cortes do mapa de Temp W no ultimo instante de simulacédo /
Temp W x Distdncia da entrada
saveas (3, 'TempW cortes mapa final Y',

vw 1
vw 2 =
vw 3 =
vw 4 =
vw 5
vw 6 =

figure (4)

= Mwf

(1, :
Mwf (16
Mwf (32,
Mwf (48,
(64
(80

= Mwf

Mw £

)

)
:)
H I
)
)

[m]")

’
’
’
’

’

plot(xl,vw 1,'r"',x1,vw 2,'y",x1,vw 3,'g"',x1l,vw _4,'c',x1l,vw_5,'b",x1,

vw_6,'m");
grid on;

xlabel ('Distédncia X
ylabel ('Temperatural[K]"');

title('Cortes do mapa de Temp W no ultimo instante de simulacdo /
Temp W x Distdncia da entrada
saveas (4, 'TempW cortes mapa final X',

end

[m] "),

80



