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RESUMO 
 
 Este trabalho tem como objetivo principal a análise do comportamento 

de um trocador de calor em fluxo cruzado quando operado em um regime 

transiente. Primeiramente, foi estudado um modelo teórico de um trocador 

deste tipo, de onde foi feita uma modelagem matemática para que seja 

possível estudar a dinâmica das temperaturas internas do trocador até que 

estas cheguem a um valor de regime. Com o modelo bem definido, foi 

estudado o seu comportamento em condições variáveis de funcionamento 

assim como foi dado um início a um estudo para adaptar o modelo simples 

para um composto por vários sistemas em conjunto. 



ABSTRACT 

 

 The main objective of this work is the analysis of the behavior of a 

cross-flow heat exchanger in transient state. Firstly, a theoretical model of 

this type of exchanger was modeled. With this mathematical model we were 

able to create command lines so we could study the behavior of the internal 

temperatures within the exchanger until it reached a steady state. With the 

well know model, we studied how the system would behave under variable 

conditions and we started a research for an adaptation of the original model 

in which we could compose a more complex model of a heat exchanger with 

only a combination of the original model. 
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1. INTRODUÇÃO: TROCADORES DE CALOR 

 

 Trocadores de calor têm como função principal transferir o calor de 

uma parte para outra de um equipamento, onde exista uma diferença de 

temperaturas. Geralmente, são utilizados para a troca de calor entre fluídos, 

um “quente” e outro “frio”, podendo ou não ser separados por uma parede. 

 

 Esse tipo de equipamento é utilizado nas mais diversas aplicações. 

Seja em máquinas comuns como geladeiras, radiadores de carros e 

equipamentos de ar condicionado, mas também em inúmeras aplicações 

industriais como caldeiras, tanques de refrigeração, entre outros. 

 

 

 

 

 

 

1.1. TIPOS DE TROCADORES  

 

 Dada a definição um tanto genérica para esse tipo de equipamento 

descrito anteriormente, é normal esperar inúmeros tipos de trocadores. 

Devido ao amplo uso e às diversas aplicações, pode ser necessário 

alcançar diferentes características de funcionamento desse dispositivo. 

 

 Sendo assim foram desenvolvidos diversos tipos de trocadores de 

calor, desde o mais simples, com dois fluidos correndo numa mesma 

direção separados por uma parede, até modelos bastante complexos. Esse 

desenvolvimento de trocadores com características construtivas diversas se 

deve à busca de equipamentos cada vez mais eficientes, tanto na taxa de 

troca de calor, quanto em tamanho ou custo. 
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 Tentando simplificar todas essas possíveis configurações, podemos 

dividir os trocadores em três tipos:  

 

 - Fluxo Paralelo (fig 1.1a), com os dois fluidos escoando na mesma 

direção com uma parede entre eles. 

 

 - Fluxo em contra corrente (fig 1.1b), com construção semelhante ao 

de fluxo paralelo, mas com os fluidos escoando em direções opostas. 

 

 - Fluxo cruzado (fig 1.1c), com um fluido passando em uma direção 

perpendicular ao outro.  

 

 

Figura 1.1 - Tipos de trocadores 

 

 A partir desses três modelos de trocadores podemos criar 

equipamentos mais complexos. Quando colocados em conjunto, seja uma 

combinação entre eles ou somente vários passes de mesma configuração, é 

possível criar equipamentos diferentes para aplicações mais específicas, 
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alcançando melhores características. Na fig. 1.2 a seguir, temos um trocador 

com uma combinação de fluxo cruzado e contra corrente. 

 

 

Figura 1.2 - Trocador “Cross-counterflow” (INCROPERA, 2008) 

1.2. REGIME TRANSITÓRIO 

 

 O método mais simples de se estudar o comportamento de um 

equipamento, incluindo trocadores de calor, é estudando o comportamento 

em regime permanente. Nesse estado, as características do escoamento 

dentro do trocador de calor (Velocidade, pressão, densidade e etc.) variam 

somente com as coordenadas espaciais.  

 

 Um método mais complexo e que permite estudar melhor o 

comportamento do trocador é utilizando um regime transitório. Nesse 

estado, é possível incluir no modelo variações temporais das características 

do escoamento. Assim, é possível estudar não só o comportamento nas 

coordenadas espaciais, mas também como todas as variáveis do 

escoamento variam no tempo dado alguma variação temporal dessas 

variáveis. 

 

 Com esse estudo em regime transitório é possível analisar situações 

mais críticas do equipamento como em partidas da máquina, quando as 
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condições variam bastante e a dinâmica é bastante distante do regime 

permanente. Ou em condições de problemas de operação, quando ocorrem 

picos de temperatura ou pressão, gerando uma condição inadequada que 

mesmo que momentânea pode gerar complicações no processo. 
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2. OBJETIVOS 

 

 No trabalho de final de curso de Beato e Monte (2012) foram 

estudados o comportamento de dois desses tipos de trocadores 

fundamentais, em fluxo paralelo e em contra-corrente. No texto, as autoras 

encontraram um modelo matemático para essas configurações de 

trocadores e estudaram a resposta destes em regime transitório para 

variações de temperatura nas entradas.  

 

Como complemento ao estudo citado, esse trabalho tem como 

objetivo principal analisar o comportamento de trocadores de calor em fluxo 

cruzado. Primeiramente será buscado um modelo adequado para o sistema 

e, a partir deste, realizado diversas simulações buscando a resposta para 

diversas situações de funcionamento. É importante notar que esse trabalho 

busca principalmente a resposta para um sistema transitório. 

 

 Com um modelo adequado, serão feitas simulações variando os 

diversos parâmetros do modelo para buscar uma otimização da resposta. 

Após essa etapa, será feito um estudo considerando as características 

construtivas de um trocador desse tipo incluindo características de 

equipamentos reais e levando em consideração o escoamento dos fluidos, 

característica bastante importante para se avaliar a troca de calor dentro de 

um trocador de fluxo cruzado. Devido a diversas hipóteses simplificadoras, 

essas características irão pouco influenciar o modelo teórico estudado a 

princípio.  

 

 Para resolver o problema real do trocador, considerando uma 

construção real deste equipamento, iremos realizar um estudo do 

escoamento através de softwares de dinâmica de fluidos computacional 

para encontrar um modelo um pouco mais próximo ao de modelos 

comerciais. 
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3. MODELO DE UM TROCADOR DE CALOR DE FLUXO CRUZADO 

 

  

3.1. MODELO FÍSICO  

 

 Para encontrar o modelo matemático necessário, é necessário 

primeiramente definir um modelo físico a ser estudado. No caso do trocador 

em fluxo cruzado, será considerada uma chamada “célula” do trocador como 

a da figura 3.1. 

 

 

Figura 3.1 - Célula do trocador 

 

 Nessa célula, temos dois fluidos, denominados quente (índice h) e frio 

(índice c) escoando perpendicularmente entre si, separados por uma parede 

de dimensões e materiais bem definidos.  

 

 A figura 3.2 mostra um diagrama com as dimensões da célula e uma 

distribuição de temperaturas genéricas esperadas, onde já é possível 

denominar algumas variáveis importantes para o modelo.  
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Figura 3.2 - Diagrama para o trocador de fluxo cruzado 

 

 Nesse modelo físico deveremos adicionar algumas hipóteses para o 

desenvolvimento adequado. São elas:  

 

 - Fluxo perpendicular de escoamento; 

 - Regime transitório; 

 - Armazenamento térmico na parede e nos fluidos; 

 - Troca de calor adiabática; 

 - Fluxo não misturado dentro da célula. 
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3.2. EQUACIONAMENTO 

 

 O equacionamento do sistema considerado será dado em três partes: 

O balanceamento energético do fluido quente, do fluido frio e da parede. No 

geral, o balanceamento será dado como a soma das energias que entram e 

saem da região considerada que será igualada ao armazenamento na 

região. Todos os cálculos dessa seção serão realizados tomando a partícula 

em destaque da figura 3.2. 

 

 Antes do equacionamento, são necessárias algumas definições: 

 

𝑚̃ =  
𝑚̇𝛿𝑥

𝑢
 

𝑢 =
𝛿𝑥

𝛿𝑡
 

𝑆 = 𝐿𝑥𝐿𝑦 

 

 

 Sendo: 

𝑚̇ → 𝐹𝑙𝑢𝑥𝑜 𝑑𝑒 𝑚𝑎𝑠𝑠𝑎 𝑖𝑛𝑠𝑡𝑎𝑛𝑡â𝑛𝑒𝑜 

𝑢 → 𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑡â𝑛𝑒𝑎 

𝑆 → Á𝑟𝑒𝑎 𝑑𝑒 𝑡𝑟𝑜𝑐𝑎 𝑑𝑒 𝑐𝑎𝑙𝑜𝑟 

 

 

3.2.1. BALANÇO DE ENERGIA NO FLUIDO QUENTE 

  

 No fluido quente, o balanço será dado pela diferença de energia 

contida no fluido na entrada e saída da célula, subtraído da energia 

transferida para a parede, tudo isso igualada a energia armazenada no 

fluido: 
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[𝐸𝑛. 𝑓𝑙𝑢𝑖𝑑𝑜 𝑞𝑢𝑒𝑛𝑡𝑒 𝑛𝑎 𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − 𝐸𝑛. 𝑓𝑙𝑢𝑖𝑑𝑜 𝑞𝑢𝑒𝑛𝑡𝑒 𝑛𝑎 𝑠𝑎í𝑑𝑎]

− [𝐶𝑎𝑙𝑜𝑟 𝑝𝑎𝑟𝑎 𝑎 𝑝𝑎𝑟𝑒𝑑𝑒] =  [𝐸𝑛. 𝑎𝑟𝑚𝑎𝑧𝑒𝑛𝑎𝑑𝑎 𝑛𝑜 𝑓𝑙𝑢𝑖𝑑𝑜 𝑞𝑢𝑒𝑛𝑡𝑒] 

 

[(𝑚̇ℎ

𝛿𝑦

𝐿𝑦
)𝐶ℎ𝑇ℎ − (𝑚̇ℎ

𝛿𝑦

𝐿𝑦
)𝐶ℎ (𝑇ℎ + 𝑇ℎ

𝜕𝑇ℎ
𝜕𝑥

𝛿𝑥)] − ℎℎ(𝛿𝑥𝛿𝑦)(𝑇ℎ − 𝑇𝑤)

=  𝑚̇ℎ (
𝛿𝑦

𝐿𝑦
)𝐶ℎ

𝜕𝑇ℎ
𝜕𝑡
        (3.1) 

 

 Fazendo algumas transformações, chegamos à:  

 

𝜕𝑇ℎ
𝜕𝑡

+ 𝑢ℎ
𝜕𝑇ℎ
𝜕𝑥

=  − (
ℎℎ𝑆

𝑚̇ℎ𝐶ℎ
)
𝑢ℎ
𝐿𝑥
(𝑇ℎ − 𝑇𝑤)        (3.2) 

 

3.2.2. BALANÇO DE ENERGIA NA PAREDE 

 

 Na parede, o balanço energético terá alguns fatores exclusivos para a 

parede, na forma da condução de calor nas direções x e y, não existentes 

nos fluidos. O balanço geral será dado por:  

 

[𝐶𝑎𝑙𝑜𝑟 𝑣𝑖𝑛𝑑𝑜 𝑑𝑜 𝑓𝑙𝑢𝑖𝑑𝑜 𝑞𝑢𝑒𝑛𝑡𝑒 − 𝐶𝑎𝑙𝑜𝑟 𝑠𝑎𝑖𝑛𝑑𝑜 𝑝𝑎𝑟𝑎 𝑓𝑙𝑢𝑖𝑑𝑜 𝑓𝑟𝑖𝑜]

− [𝐶𝑜𝑛𝑑𝑢çã𝑜 𝑛𝑎 𝑑𝑖𝑟. 𝑥 + 𝑐𝑜𝑛𝑑𝑢çã𝑜 𝑛𝑎 𝑑𝑖𝑟. 𝑦]

=  [𝐸𝑛. 𝑎𝑟𝑚𝑎𝑧𝑒𝑛𝑎𝑑𝑎 𝑛𝑎 𝑝𝑎𝑟𝑒𝑑𝑒] 

 

[ℎℎ(𝛿𝑥𝛿𝑦)(𝑇ℎ − 𝑇𝑤) − ℎ𝑐(𝛿𝑥𝛿𝑦)(𝑇𝑤 − 𝑇𝑐)]

− {
𝜕

𝜕𝑥
[−𝜆𝑥 (𝐴𝑥

𝛿𝑦

𝐿𝑦
)
𝜕𝑇𝑤
𝜕𝑥

𝛿𝑥 ] +
𝜕

𝜕𝑦
[−𝜆𝑦 (𝐴𝑦

𝛿𝑥

𝐿𝑥
)
𝜕𝑇𝑤
𝜕𝑦

𝛿𝑦 ]}

=  𝑀𝑤 (
𝛿𝑥𝛿𝑦

𝐿𝑥𝐿𝑦
)𝐶𝑤

𝜕𝑇𝑤
𝜕𝑡

         (3.3) 

 

 Sendo: 

 

𝑀𝑤 = 𝜌𝑤𝑉𝑤 
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𝑘̂ = 𝜆
𝐴𝐿

𝑉𝑤
 

 Teremos então: 

 

𝜕𝑇𝑤
𝜕𝑡

− 𝑘̂𝑥
𝜕2𝑇𝑤
𝜕𝑥2

− 𝑘̂𝑦
𝜕2𝑇𝑤
𝜕𝑦2

= (
ℎℎ𝑆

𝑀𝑤𝐶𝑤
) (𝑇ℎ − 𝑇𝑤) − (

ℎ𝑐𝑆

𝑀𝑤𝐶𝑤
) (𝑇𝑤 − 𝑇𝑐)      (3.4) 

 

3.2.3. BALANÇO DE ENERGIA NO FLUIDO FRIO 

 

 No fluido frio, temos um equacionamento bastante semelhante ao do 

fluido quente. Assim teremos: 

 

[𝐸𝑛. 𝑓𝑙𝑢𝑖𝑑𝑜 𝑓𝑟𝑖𝑜 𝑛𝑎 𝑒𝑛𝑡𝑟𝑎𝑑𝑎 − 𝐸𝑛. 𝑓𝑙𝑢𝑖𝑑𝑜 𝑓𝑟𝑖𝑜 𝑛𝑎 𝑠𝑎í𝑑𝑎]

− [𝐶𝑎𝑙𝑜𝑟 𝑝𝑎𝑟𝑎 𝑎 𝑝𝑎𝑟𝑒𝑑𝑒] =  [𝐸𝑛. 𝑎𝑟𝑚𝑎𝑧𝑒𝑛𝑎𝑑𝑎 𝑛𝑜 𝑓𝑙𝑢𝑖𝑑𝑜 𝑓𝑟𝑖𝑜] 

 

[(𝑚̇𝑐

𝛿𝑦

𝐿𝑦
)𝐶𝑐𝑇𝑐 − (𝑚̇𝑐

𝛿𝑦

𝐿𝑦
)𝐶𝑐 (𝑇𝑐 + 𝑇𝑐

𝜕𝑇𝑐
𝜕𝑥

𝛿𝑥)] − ℎ𝑐(𝛿𝑥𝛿𝑦)(𝑇𝑤 − 𝑇𝑐)

=  𝑚̇𝑐 (
𝛿𝑦

𝐿𝑦
)𝐶𝑐

𝜕𝑇𝑐
𝜕𝑡
        (3.5) 

 

 Fazendo as mesmas transformações do fluido quente: 

 

 

𝜕𝑇𝑐
𝜕𝑡

+ 𝑢𝑐
𝜕𝑇𝑐
𝜕𝑦

=  + (
ℎ𝑐𝑆

𝑚̇𝑐𝐶𝑐
)
𝑢𝑐
𝐿𝑦
(𝑇𝑤 − 𝑇𝑐)        (3.6) 
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3.3. MODELO MATEMÁTICO 

 Com as equações definidas, podemos montar o sistema a ser 

resolvido: 

{
  
 

  
 
𝜕𝑇ℎ
𝜕𝑡

+ 𝑢ℎ
𝜕𝑇ℎ
𝜕𝑥

                      =  − (
ℎℎ𝑆

𝑚̇ℎ𝐶ℎ
)
𝑢ℎ
𝐿𝑥
(𝑇ℎ − 𝑇𝑤)                                    

𝜕𝑇𝑤
𝜕𝑡

− 𝑘̂𝑥
𝜕2𝑇𝑤
𝜕𝑥2

− 𝑘̂𝑦
𝜕2𝑇𝑤
𝜕𝑦2

= (
ℎℎ𝑆

𝑀𝑤𝐶𝑤
) (𝑇ℎ − 𝑇𝑤) − (

ℎ𝑐𝑆

𝑀𝑤𝐶𝑤
) (𝑇𝑤 − 𝑇𝑐)   

𝜕𝑇𝑐
𝜕𝑡
                       +  𝑢𝑐

𝜕𝑇𝑐
𝜕𝑦

 =                                       + (
ℎ𝑐𝑆

𝑚̇𝑐𝐶𝑐
)
𝑢𝑐
𝐿𝑦
(𝑇𝑤 − 𝑇𝑐)

(3.7) 

 

 O sistema da eq.(3.7) nos fornece uma solução geral (considerando 

as hipóteses utilizadas) para a dinâmica do trocador. A partir dele é possível 

considerar algumas simplificações. Na eq.(3.8) a seguir, temos um sistema 

quando desconsideradas variações temporais, ou seja, quando considerado 

um regime permanente. 

 

{
  
 

  
  𝑢ℎ

𝜕𝑇ℎ
𝜕𝑥

                      =  − (
ℎℎ𝑆

𝑚̇ℎ𝐶ℎ
)
𝑢ℎ
𝐿𝑥
(𝑇ℎ − 𝑇𝑤)                                    

𝑘̂𝑥
𝜕2𝑇𝑤
𝜕𝑥2

− 𝑘̂𝑦
𝜕2𝑇𝑤
𝜕𝑦2

= (
ℎℎ𝑆

𝑀𝑤𝐶𝑤
) (𝑇ℎ − 𝑇𝑤) − (

ℎ𝑐𝑆

𝑀𝑤𝐶𝑤
) (𝑇𝑤 − 𝑇𝑐)   

                    + 𝑢𝑐
𝜕𝑇𝑐
𝜕𝑦

 =                                       + (
ℎ𝑐𝑆

𝑚̇𝑐𝐶𝑐
)
𝑢𝑐
𝐿𝑦
(𝑇𝑤 − 𝑇𝑐)

(3.8) 

 

 Por fim, uma última variação, desta vez muito mais útil nesse estudo, 

onde retiramos os termos de condutividade térmica na parede (os termos de 

derivada segunda). Esse sistema se torna muito mais adequado devido à 

menor influência desses termos e ao fato de que uma solução numérica 

considerando esses termos seria muito mais complexa e demorada. 

 

{
  
 

  
 
𝜕𝑇ℎ
𝜕𝑡

+ 𝑢ℎ
𝜕𝑇ℎ
𝜕𝑥

                      =  − (
ℎℎ𝑆

𝑚̇ℎ𝐶ℎ
)
𝑢ℎ
𝐿𝑥
(𝑇ℎ − 𝑇𝑤)                                    

𝜕𝑇𝑤
𝜕𝑡

                                          =  (
ℎℎ𝑆

𝑀𝑤𝐶𝑤
) (𝑇ℎ − 𝑇𝑤) − (

ℎ𝑐𝑆

𝑀𝑤𝐶𝑤
) (𝑇𝑤 − 𝑇𝑐)   

𝜕𝑇𝑐
𝜕𝑡
                       +  𝑢𝑐

𝜕𝑇𝑐
𝜕𝑦

 =                                       + (
ℎ𝑐𝑆

𝑚̇𝑐𝐶𝑐
)
𝑢𝑐
𝐿𝑦
(𝑇𝑤 − 𝑇𝑐)

(3.9) 
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3.4. MÉTODOS DE SOLUÇÃO DO PROBLEMA 

 

Para a solução do problema de trocadores de calor em fluxo cruzado 

existem alguns métodos diferentes na literatura. Aqui será feito um pequeno 

resumo destes métodos considerando suas características principais e 

eventuais problemas. 

 

3.4.1. MÉTODO DE TRANSFORMADA DE LAPLACE 

 

 Romie (1983) e Chen (1991) formularam métodos de solução desse 

problema utilizando uma única transformada de Laplace considerando um 

sistema gás-gás com ambos os fluidos não misturados. Porém em ambos os 

textos foram necessárias hipóteses para se desprezar termos de capacidade 

térmica dos fluidos, impossibilitando uma solução completa do escoamento. 

 

3.4.2. TRANSFORMADA DE LAPLACE THREEFOLD 

 

 Em dois textos, Spiga e Spiga (1987 e 1992) chegaram a soluções 

para o problema com perturbações de temperatura utilizando transformadas 

de Laplace Threefold. No primeiro (1987), assim como na solução 

comentada anteriormente, foram desprezados os termos de capacidade 

térmica no sistema gás-gás. Na publicação seguinte, os autores incluíram 

esses termos na solução do problema. 

 

3.4.3. MÉTODO DAS DIFERENÇAS FINITAS 

 

 Em sua publicação, Yamashita ET al. (1978) demonstrou uma 

solução do problema de fluxo cruzado utilizando o método de diferenças 

finitas para um escoamento com um só passe e variações na temperatura 

de um dos fluidos. Esse método se beneficia das capacidades 
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computacionais para simplificar o problema e permitir resolver inclusive 

problemas com mais de um passe sem um aumento significativo da 

complexidade da solução, embora possa necessitar um tempo razoável para 

a solução numérica em caso de malhas refinadas. 

 

 

 A partir dessas soluções encontradas na literatura, foi escolhido para 

este trabalho o uso dos métodos de diferenças finitas. Além da menor carga 

matemática necessária para o uso dessa solução, a capacidade 

computacional atual permite que o sistema considerado seja calculado em 

somente alguns minutos em um computador pessoal comum, mesmo com 

uma malha bastante refinada (suficiente para a solução adequada).  

 

 

3.5. MÉTODO DE DIFERENÇAS FINITAS 

 

O método das diferenças finitas nos permite calcular o 

comportamento de sistemas dinâmicos através de um espaço discretizado 

aproximado do real que nos fornece uma solução, também aproximada, da 

resposta real. Apesar de não oferecer a solução exata, o erro intrínsico ao 

método pode ser controlado refinando a malha, ou seja, aumentando o 

número de pontos da discretização. Para a discretização do problema, as 

dimensões físicas serão divididas em pontos, tanto no espaço quanto no 

tempo. No caso do problema de trocadores de fluxo cruzado em regime 

transitório, será necessário a discretização de duas coordenadas espaciais 

além do tempo. 

  

 Nesse tipo de solução, serão calculados os estados e condições 

somente nesses pontos escolhidos. Assim, a transformação da solução 

discretizada será sempre aproximada da real. Em contrapartida, esse 
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método gera algumas facilidades no cálculo da resposta. A principal delas é 

a possibilidade de se substituir as derivadas do modelo matemático por 

diferenças entre dois dos pontos da malha. 

 

 Com a malha bem definida e a dificuldade das derivadas 

ultrapassada, o método permite calcular as condições de cada ponto no 

espaço em função de condições de instantes anteriores. Por esse motivo é 

importante deixarem claras as condições iniciais do problema, de onde 

partirão os cálculos iterativos nessa solução. 

 

 Porém, como todos os métodos este apresenta algumas dificuldades 

quando utilizado para o cálculo da resposta de um trocador deste tipo. Os 

principais problemas são: 

 

  - Espaço bidimensional do problema de fluxo cruzado gera 

uma malha muito maior que em uma solução para um trocador em fluxo 

paralelo ou contra corrente que só exige uma dimensão. Se realizada uma 

análise semelhante com um trocador de mesmo tamanho, no problema de 

fluxo cruzado teríamos uma malha com o quadrado de pontos. 

  - Devido aos erros derivados da discretização, temos de usar 

uma malha bastante refinada, ou seja, uma diferença muito pequena entre 

os pontos no espaço e, principalmente, no tempo. Isso gera problemas na 

simulação já que conforme as diferenças entre os pontos diminuem, o tempo 

gasto na simulação pode aumentar significativamente. Então é necessário 

um balanço considerando um menor erro possível com um dado tempo hábil 

de processamento. 

 

3.5.1.  DISCRETIZAÇÃO 

 

Na modelagem do sistema, utilizamos a notação 𝑇ℎ, 𝑇𝑤 e 𝑇𝑐 para nos 

referir as temperaturas reais do fluido quente, da parede e do fluido frio, 
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respectivamente. Sabendo que essas temperaturas variam com as três 

dimensões do sistema, eles serão tal que: 

 

{

𝑇ℎ = 𝑇ℎ(𝑥, 𝑦, 𝑡)
𝑇𝑤 = 𝑇𝑤(𝑥, 𝑦, 𝑡)
𝑇𝑐 = 𝑇𝑐(𝑥, 𝑦, 𝑡)

 

 

Na discretização, conforme a fig. 3.3, temos a divisão da área definida 

por 𝐿𝑥 e 𝐿𝑦 em pontos distanciados entre si por Δ𝑥 e Δ𝑦, nas suas 

respectivas direções. Nesses pontos, nomearemos as temperaturas de 

maneira diferente para deixar claro que se trata de um campo discretizado. 

Chamaremos as temperaturas no fluido quente, parede e fluido frio de 

𝜃ℎ , 𝜃𝑤 𝑒 𝜃𝑐, respectivamente. 

 

Na fig. 3.3 a seguir, podemos ver a representação simplificada dos 

pontos da malha considerada para um instante qualquer k do tempo. Nesse 

exemplo, estão em destaque alguns pontos de 𝜃ℎ, mas ela se extende para 

as outras temperaturas 𝜃𝑤 e 𝜃𝑐. É importante notar que a coordenada i é o 

equivalente discreto ao avanço de x, analogamente para j com y e k com t.  

 

Figura 3.3 - Representação simplificada da malha para um tempo qualquer 

 Podemos então dizer que, no espaço discretizado: 
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{

𝜃ℎ = 𝜃ℎ(𝑖, 𝑗, 𝑘)
𝜃𝑤 = 𝜃𝑤(𝑖, 𝑗, 𝑘)
𝜃𝑐 = 𝜃𝑐(𝑖, 𝑗, 𝑘)

 

 Com: 

𝑖 = 1,2, …𝑁 

𝑗 = 1,2, …𝑀 

𝑘 = 1,2, …𝑃 

 

 E definindo N, M e P tal que: 

 

𝑁 = 
𝐿𝑥

Δ𝑥⁄  

𝑀 = 
𝐿𝑦

Δ𝑦⁄  

𝑃 = 𝑇 Δ𝑡⁄  

 Sabendo que Δ𝑥, Δ𝑦 𝑒 Δ𝑡 são os intervalos entre os pontos 

discretizados e T é o tempo total de simulação. 

 

 Utilizando a temperatura no fluido quente como um exemplo, teremos 

três nomenclaturas para esta: 

 

𝑇ℎ(𝑥, 𝑦, 𝑡) → 𝑆𝑜𝑙𝑢çã𝑜 𝑟𝑒𝑎𝑙 

𝑇ℎ(𝑥𝑖, 𝑦𝑗 , 𝑡𝑘) → 𝑆𝑜𝑙𝑢çã𝑜 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚 𝑝𝑜𝑛𝑡𝑜 𝑜𝑛𝑑𝑒 𝑒𝑥𝑖𝑠𝑡𝑒 𝑢𝑚 𝑝𝑜𝑛𝑡𝑜 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑜 (𝑖, 𝑗, 𝑘) 

𝜃ℎ(𝑖, 𝑗, 𝑘) → 𝑆𝑜𝑙𝑢çã𝑜 𝑎𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑑𝑎 𝑛𝑜 𝑝𝑜𝑛𝑡𝑜 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑜 

 

 

3.5.2. MÉTODO DE APROXIMAÇÃO DE DERIVADAS 

 

Em um modelo discretizado, o conceito de derivada se torna 

incoerente dado que o modelo só conta com pontos distantes de Δ entre si 

ao invéz de uma função contínua no espaço. Assim, para substituir funções 



 

24 
 

derivadas no mundo discreto se utiliza a teoria de séries de Taylor. Dela 

podemos retirar o seguinte: 

 

𝑇(𝑥𝑖 + 𝛿) = 𝑇(𝑥𝑖) + 𝛿
𝜕𝑇

𝜕𝑥
|
𝑥𝑖

+
𝛿²

2

𝜕²𝑇

𝜕𝑥²
|
𝑥𝑖

+
𝛿³

3!

𝜕³𝑇

𝜕𝑥³
|
𝑥𝑖

+⋯ 

 

⟺ 𝛿
𝜕𝑇

𝜕𝑥
|
𝑥𝑖

=  𝑇(𝑥𝑖 + 𝛿) −  𝑇(𝑥𝑖) − (
𝛿2

2

𝜕2𝑇

𝜕𝑥2
|
𝑥𝑖

+
𝛿3

3!

𝜕3𝑇

𝜕𝑥3
|
𝑥𝑖

+⋯)   

 

Nessa equação, 𝛿 é um termo suficientemente pequeno, o que 

permite fazer essa igualdade. Se o substituirmos por um Δ𝑥 também 

suficientemente pequeno, podemos fazer que 

 

⟺
𝜕𝑇

𝜕𝑥
|
𝑥𝑖

= 
𝑇(𝑥𝑖 + Δ𝑥) −  𝑇(𝑥𝑖)

Δ𝑥
− (

Δ𝑥

2

𝜕2𝑇

𝜕𝑥2
|
𝑥𝑖

+
Δ𝑥2

3!

𝜕3𝑇

𝜕𝑥3
|
𝑥𝑖

+⋯)  (3.10)   

 

Até então temos utilizado 𝑇(𝑥) como uma função contínua. Porém se 

analizarmos a equação 3.10 com 𝑥𝑖 sendo um ponto pertencente a malha 

discretizada, sabemos que o ponto (𝑥𝑖 + Δ𝑥) também pertencerá à malha. 

Com isso, podemos dizer que mesmo em uma malha discretizada, a 

aproximação seguinte será válida. 

 

𝜕𝜃

𝜕𝑥
|
𝑖
≅ 
𝜃(𝑖 + 1) −  𝜃(𝑖)

Δ𝑥
+ 𝐸(Δ𝑥2)    (3.11) 

 

Temos então um valor aproximado para a derivada com os pontos do 

espaço discretizados. É importante notar que essa aproximação inclui um 

erro 𝐸(Δ𝑥2) que dificilmente será encontrado dado que não temos como 

encontrar os valores das derivadas seguintes da função. Porém, como é 

possível verificar na equação 3.10, todos os termos incluídos nesse erro são 

função de pelo menos o quadrado da diferença Δ𝑥. Assim, o valor desse 
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erro poderá ser controlado utilizando um valor suficientemente pequeno para 

Δ, diminuindo seu valor frente aos outros termos da equação 3.11. 

 

É importante considerar que embora seja importante escolher valores 

pequenos para Δ, um valor muito menor que o suficiente poderá gerar um 

tempo de processamento desnecessário. 

  

 Em alguns casos também podemos fazer uma modificação na 

equação 3.10, onde usamos 𝛿 = Δ𝑥. Podemos também utilizar 𝛿 =  −Δ𝑥 

para gerarmos o que é chamado de método de diferença reversa. Esse 

método será util para que as simulações, que começam os cálculos nas 

regiões de condições de contorno sempre utilizem as temperaturas na 

parede durante o cálculo. 

 

 

𝜕𝑇

𝜕𝑥
|
𝑥𝑖

=  
− 𝑇(𝑥𝑖 − Δ𝑥) +  𝑇(𝑥𝑖)

Δ𝑥
+
Δ𝑥

2

𝜕2𝑇

𝜕𝑥2
|
𝑥𝑖

−
Δ𝑥2

3!

𝜕3𝑇

𝜕𝑥3
|
𝑥𝑖

+⋯   

 

⇔ 
𝜕𝜃

𝜕𝑥
|
𝑖
≅ 
𝜃(𝑖) −  𝜃(𝑖 − 1)

Δ𝑥
+ 𝐸′(Δ𝑥2)    (3.12) 

 

 Por fim, podemos fazer análises semelhantes para a coordenada y e 

também para o tempo t, gerando equações semelhantes às 3.11 e 3.12 com 

essas coordenadas. 

 

3.5.3. APLICAÇÃO DO MÉTODO AO PROBLEMA 

 

Como já explicado, utilizaremos o método de diferenças finitas para 

calcular os estados do problema em pontos discretizados. As temperaturas 

𝑇ℎ(𝑥, 𝑦, 𝑡),  𝑇𝑤(𝑥, 𝑦, 𝑡) 𝑒 𝑇𝑐(𝑥, 𝑦, 𝑡) serão aproximadas para as funções 
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𝜃ℎ(𝑖, 𝑗, 𝑘), 𝜃𝑤(𝑖, 𝑗, 𝑘) 𝑒 𝜃𝑐(𝑖, 𝑗, 𝑘) e as derivadas do sistema original 3.9 serão 

aproximadas pelas equações 3.11 e 3.12. 

 

Partindo do sistema original 3.9 

 

{
  
 

  
 

𝜕𝑇ℎ
𝜕𝑡

+ 𝑢ℎ
𝜕𝑇ℎ
𝜕𝑥

=  − (
ℎℎ𝑆

𝑚̇ℎ𝐶ℎ
)
𝑢ℎ
𝐿𝑥
(𝑇ℎ − 𝑇𝑤)

𝜕𝑇𝑤
𝜕𝑡

=  (
ℎℎ𝑆

𝑀𝑤𝐶𝑤
) (𝑇ℎ − 𝑇𝑤) − (

ℎ𝑐𝑆

𝑀𝑤𝐶𝑤
) (𝑇𝑤 − 𝑇𝑐)

𝜕𝑇𝑐
𝜕𝑡
 +  𝑢𝑐

𝜕𝑇𝑐
𝜕𝑦

 = +(
ℎ𝑐𝑆

𝑚̇𝑐𝐶𝑐
)
𝑢𝑐
𝐿𝑦
(𝑇𝑤 − 𝑇𝑐)

 

 

Substituindo as funções 𝑇 pelas funções 𝜃: 

 

{
  
 

  
 

𝜕𝜃ℎ(𝑖, 𝑗, 𝑘)

𝜕𝑡
+ 𝑢ℎ

𝜕𝜃ℎ(𝑖, 𝑗, 𝑘)

𝜕𝑥
=  − (

ℎℎ𝑆

𝑚̇ℎ𝐶ℎ
)
𝑢ℎ
𝐿𝑥
(𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘))

𝜕𝜃𝑤(𝑖, 𝑗, 𝑘)

𝜕𝑡
=  (

ℎℎ𝑆

𝑀𝑤𝐶𝑤
) (𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘)) − (

ℎ𝑐𝑆

𝑀𝑤𝐶𝑤
) (𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))

𝜕𝜃𝑐(𝑖, 𝑗, 𝑘)

𝜕𝑡
 +  𝑢𝑐

𝜕𝜃𝑐(𝑖, 𝑗, 𝑘)

𝜕𝑦
 = + (

ℎ𝑐𝑆

𝑚̇𝑐𝐶𝑐
)
𝑢𝑐
𝐿𝑦
(𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))

 

 

 Denominaremos as seguintes constantes: 

 

{
 
 
 

 
 
 𝐸 =  (

ℎℎ𝑆
𝑚̇ℎ𝐶ℎ

)
𝑢ℎ
𝐿𝑥
 

𝐹 =  (
ℎℎ𝑆
𝑀𝑤𝐶𝑤

)

𝐺 =  (
ℎ𝑐𝑆
𝑀𝑤𝐶𝑤

)

𝐻 =  (
ℎ𝑐𝑆
𝑚̇𝑐𝐶𝑐

)
𝑢𝑐
𝐿𝑦

 

 

 Substituindo essas constantes e as derivadas temporais conforme a 

equação 3.11 
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{
  
 

  
 

𝜃ℎ(𝑖, 𝑗, 𝑘 + 1) − 𝜃ℎ(𝑖, 𝑗, 𝑘)

Δ𝑡
+ 𝑢ℎ

𝜕𝜃ℎ(𝑖, 𝑗, 𝑘)

𝜕𝑥
=  −𝐸. (𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘))

𝜃𝑤(𝑖, 𝑗, 𝑘 + 1) − 𝜃𝑤(𝑖, 𝑗, 𝑘)

Δ𝑡
=  𝐹. (𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘)) −  𝐺. (𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))

𝜃𝑐(𝑖, 𝑗, 𝑘 + 1) − 𝜃𝑐(𝑖, 𝑗, 𝑘)

Δ𝑡
 +  𝑢𝑐

𝜕𝜃𝑐(𝑖, 𝑗, 𝑘)

𝜕𝑦
 = 𝐻. (𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))

 

 

 Trocando as derivadas parciais conforme 3.12 

 

{
  
 

  
 
𝜃ℎ(𝑖, 𝑗, 𝑘 + 1) − 𝜃ℎ(𝑖, 𝑗, 𝑘)

Δ𝑡
+ 𝑢ℎ (

𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃ℎ(𝑖 − 1, 𝑗, 𝑘)

Δ𝑥
) =  −𝐸. (𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘))

𝜃𝑤(𝑖, 𝑗, 𝑘 + 1) − 𝜃𝑤(𝑖, 𝑗, 𝑘)

Δ𝑡
=  𝐹. (𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘)) −  𝐺. (𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))

𝜃𝑐(𝑖, 𝑗, 𝑘 + 1) − 𝜃𝑐(𝑖, 𝑗, 𝑘)

Δ𝑡
 +  𝑢𝑐 (

𝜃𝑐(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗 − 1, 𝑘)

Δ𝑦
)  = 𝐻. (𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))

 

 

 Organizando melhor as equações para facilitar a implementação na 

simulação chegaremos às equações: 

 

 - Fluido quente 

 

𝜃ℎ(𝑖, 𝑗, 𝑘 + 1) =  𝜃ℎ(𝑖, 𝑗, 𝑘) +  

Δ𝑡. [− 𝑢ℎ (
𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃ℎ(𝑖 − 1, 𝑗, 𝑘)

Δ𝑥
) − 𝐸. (𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘))]     (3.13) 

 

 - Parede 

 

𝜃𝑤(𝑖, 𝑗, 𝑘 + 1) =  𝜃𝑤(𝑖, 𝑗, 𝑘) + 

Δ𝑡. [𝐹. (𝜃ℎ(𝑖, 𝑗, 𝑘) − 𝜃𝑤(𝑖, 𝑗, 𝑘)) −  𝐺. (𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))]                     (3.14) 

 

 - Fluido frio 

 

𝜃𝑐(𝑖, 𝑗, 𝑘 + 1) =  𝜃𝑐(𝑖, 𝑗, 𝑘) + 

Δ𝑡. [− 𝑢𝑐 (
𝜃𝑐(𝑖,𝑗,𝑘)− 𝜃𝑐(𝑖,𝑗−1,𝑘)

Δ𝑦
) + 𝐻. (𝜃𝑤(𝑖, 𝑗, 𝑘) − 𝜃𝑐(𝑖, 𝑗, 𝑘))]     (3.15)  
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 Enfim com as equações devidamente discretizadas, podemos 

começar as simulações do comportamento do sistema. Nas equações de 

3.13 a 3.15 podemos calcular um termo da temperatura referente ao um 

tempo k+1 somente termos das temperaturas em um tempo k. Com isso 

podemos calcular gradativamente todas as temperaturas em todos os 

pontos do sistema desde que tenhamos um mapa inicial de temperaturas, 

em que usaremos a condição inicial do sistema. Também serão necessárias 

algumas hipóteses para adequar a simulação: 

 

 - No instante 𝑡 = 0 (𝑘 = 1) se inicia o escoamento do fluido quente 

dentro do trocador; 

 - Nesse mesmo instante se inicia a troca de calor entre os fluidos e a 

parede; 

 - O escoamento do fluido quente é suficientemente rápido para se 

desprezar as condições transientes nos momentos iniciais do escoamento 

dentro do trocador. Com essa hipótese poderemos calcular o 

comportamento do sistema como se o fluido já passasse pelo trocador mas 

a troca de calor só se iniciasse em 𝑡 = 0 (𝑘 = 1); 

 - No instante inicial, a temperatura dos fluidos e da parede é igual em 

toda a extensão da superfície de troca; 

 

θℎ(𝑖, 𝑗, 1) =  𝑇ℎ,0, 𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 𝑖, 𝑗 

θ𝑤(𝑖, 𝑗, 1) =  𝑇𝑤,0, 𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 𝑖, 𝑗 

θ𝑐(𝑖, 𝑗, 1) =  𝑇𝑐,0, 𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 𝑖, 𝑗 

 

 - Em todos os instantes, a temperatura na entrada do fluido quente 

(𝑦 = 0, 𝑗 = 1) será a temperatura de entrada do fluido (No caso, igual a 

temperatura inicial) e a temperatura na entrada do fluido frio (𝑥 = 0, 𝑖 = 1) 

será a temperatura de entrada no fluido frio, conforme o mostrado na fig. 3.3 

 

θℎ(𝑖, 1, 𝑘) =  𝑇ℎ,0, 𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 𝑖, 𝑘 

θ𝑐(1, 𝑗, 𝑘) =  𝑇𝑐,0, 𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 𝑗, 𝑘 
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4. SIMULAÇÕES DO COMPORTAMENTO DO MODELO 

 

A partir do sistema encontrado na seção anterior (eqs. 3.13, 3.14 e 3.15), 

iremos agora iniciar as simulações através de um programa desenvolvido no 

software MATLAB (código no apêndice A). Neste programa foi necessária a 

definição de algumas constantes do problema listadas na tabela 4.1 abaixo. 

 

Tabela 4.1 - Parâmetros do problema 

ℎℎ 2800 𝑊/(𝑚².𝐾)  𝑢ℎ 2 𝑚/𝑠  𝑇 10.0 𝑠 

ℎ𝑐 3100 𝑊/(𝑚².𝐾)  𝑢𝑐 3 𝑚/𝑠  Δ𝑥 0.0002 𝑚 

𝐶ℎ 2200 𝐽/(𝑘𝑔. 𝐾)  𝑚̇ℎ 0.3 𝑘𝑔/𝑠  Δ𝑦 0.005 𝑚 

𝐶𝑐 4180 𝐽/(𝑘𝑔. 𝐾)  𝑚̇𝑐 0.4 𝑘𝑔/𝑠  Δ𝑡 0.005 𝑠 

𝐶𝑤 900 𝐽/(𝑘𝑔. 𝐾)  𝑀𝑐 0.864 𝑘𝑔     

𝑇ℎ𝑧𝑒𝑟𝑜 373 𝐾  𝐿𝑥 0.4 𝑚     

𝑇𝑤𝑧𝑒𝑟𝑜 313 𝐾  𝐿𝑦 0.4 𝑚     

𝑇𝑐𝑧𝑒𝑟𝑜 303 𝐾  𝑆 0.64 𝑚²     

 

 Em análises posteriores, poderemos modificar algumas dessas 

constantes a fim de visualizar a diferença de resposta gerada em função da 

variação de uma constante específica. 

 

 Devido ao problema da temperatura em um trocador de fluxo 

cruzado depender de três coordenadas (x, y e t), a 

representação gráfica da resposta se torna difícil sem uma 

mídia de vídeo ou animação. Mesmo em um gráfico 

tridimensional, só temos como representar em papel um 

gráfico de T por x e y, ou quaisquer duas coordenadas. Por 

isso, para apresentar os resultados encontrados, teremos que 

utilizar alguns meios não convencionais, que serão explicados 

conforme a necessidade. 
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4.1. CONDIÇÕES INICIAIS 

 

No instante inicial, as temperaturas são tais quais as seguintes superfícies: 

 

 - Temperatura do fluido quente (𝜃ℎ) na superfície de troca 

 

Figura 4.1 - Condição inicial de Th 
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- Temperatura do fluido frio (𝜃𝑐) na superfície de troca

 

Figura 4.2 - Condição inicial de Tc 

- Temperatura da parede (𝜃𝑤) na superfície de troca

 

Figura 4.3 - Condição inicial de Tw 
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4.2. RESPOSTA NO TEMPO 

 

Para representar a resposta no tempo precisaremos utilizar uma das 

maneiras não convencionais. Na fig. 4.4 a seguir, podemos ver um esquema 

de cortes na malha que será utilizado tanto nessa seção quanto na próxima 

para representar as condições finais. 

 

 

 

Figura 4.4 - Representação dos cortes da superfície 

 

 Para mostrar a resposta das temperaturas no tempo, utilizaremos os 

cortes paralelos à direção do escoamento do fluido que queremos 

representar. No caso, utilizaremos os cortes coloridos na fig. 4.4 paralelos 

ao eixo x para mostrar condições relevantes ao fluido quente (que escoa 

paralelo ao eixo x) e os cortes coloridos paralelos ai eixo y para condições 

do fluido frio. Para a representação da variação da temperatura da parede 

com o tempo, utilizaremos dois gráficos, com os dois tipos de corte já que 

esta temperatura não varia com uma direção principal, mais relevante que a 

outra. Os cortes paralelos a x serão denominados conforme a fig. 4.5. 
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Figura 4.5 - Denominação dos cortes paralelos ao eixo X 

 

 De maneira análoga, os cortes paralelos a y serão tais como na fig. 
4.6 a seguir. 

 

Figura 4.6 - Denominação dos cortes paralelos ao eixo Y 

 

 - Variação da temperatura 𝜃ℎ com o tempo 

 No gráfico a seguir, foi representada a variação da temperatura 𝜃ℎ 

com o tempo em 6 pontos. Esses pontos são os últimos pontos de cada 
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corte da fig. 4.5 e com isso podemos representar a variação da temperatura 

de saída do fluido quente em coordenadas diferentes do espaço de saída. 

 

 

Figura 4.7 - Resposta de Th no tempo em diferentes pontos 

 

 Nesse gráfico, podemos notar que o comportamento geral do sistema 

não se diferencia muito do comportamento encontrado por Beato e Monte 

(2012) para os outros modelos de trocadores. É notável que nos instantes 

iniciais exista uma queda brusca na temperatura do fluido quente devido à 

diferença grande de temperaturas do fluido quente e da parede. Essa queda 

brusca inclusive faz com que a temperatura fique por alguns instantes 

abaixo da temperatura de regime do sistema. Após esse período de queda, 

o sistema irá bem mais lentamente para uma temperatura de regime. 
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 Também é importante notar a diferença de temperatura entre os 

pontos medidos. Como era de se esperar, o ponto medido mais próximo à 

entrada do fluido frio (a curva amarela) irá entrar em regime em uma 

temperatura ligeralmente menor, que é crescente conforme o ponto medido 

se afasta da entrada do fluido frio. 

 

 - Variação da temperatura 𝜃𝑐 com o tempo 

 

 No gráfico a seguir, foi representada a variação da temperatura 𝜃𝑐 

com o tempo em 6 pontos. Esses pontos são os últimos pontos de cada 

corte da fig. 4.6 e com isso podemos representar a variação da temperatura 

de saída do fluido quente em coordenadas diferentes do espaço de saída. 

 

Figura 4.8 - Resposta de Tc no tempo em diferentes pontos 
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Assim como para o fluido quente, a resposta geral do fluido frio também 

tem um formato parecido com o de outros modelos de trocador. Em um 

primeiro momento, um aumento rápido da temperatura devido à diferença 

de temperaturas entre o fluido frio e a parede e após essa faixa, uma 

variação gradual até as temperaturas entrarem em regime. 

Enfim, nesse gráfico também aparece uma diferença de temperaturas de 

regime encontrada para cada ponto considerado, em função da distância da 

entrada do fluido quente. Nesse gráfico, a curva em amarelo representa o 

ponto medido mais próximo à entrada do fluido quente e, conforme o 

esperado, entra em regime em uma temperatura maior que a dos outros 

pontos. 

 

- Variação da temperatura 𝜃𝑤 com o tempo 

 

Para a representação da temperatura da parede, serão apresentados 

dois gráficos distintos. No primeiro, será apresentada a resposta da 

temperatura com o tempo medidas nos pontos da fig. 4.5 (em cortes 

paralelos ao eixo x). No segundo gráfico, serão representadas medidas 

feitas nos pontos da fig. 4.6 (em cortes paralelos ao eixo y) 
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Figura 4.9 - Resposta de Tw no tempo em cortes paralelos ao eixo X 
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Figura 4.10 - Resposta de Tw no tempo em cortes paralelos ao eixo Y 

 

Nesses dois gráficos, fica claro que a temperatura 𝜃𝑤 não sofre de uma 

diferença brusca nos instantes iniciais, diferente do que acontece com os 

dois fluidos. Isso nos indica que é a temperatura da parede que tem a maior 

inflência no comportamento de todo o sistema. Enquanto a temperatura de 

um fluido difere bastante da temperatura da parede, essa irá sofrer uma 

variação grande da temperatura. 

 

- Comparação das temperaturas e resposta no tempo 

 

Nesse ultimo gráfico foi feita a comparação das temperaturas 𝜃ℎ, 𝜃𝑤 e 𝜃𝑐 

em um unico gráfico. Nesse caso, foi considerada as temperaturas medidas 
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somente no ultimo ponto da malha (com i = N e j = M; também representado 

pelas curvas roxas dos gráficos anteriores). Nesse gráfico podemos ver o 

comportamento das três temperaturas em conjunto para uma melhor 

comparação. 

 

 

Figura 4.11 - Comparação de Th, Tw e Tc no tempo. 

 

 Na fig. 4.11 podemos notar que o sistema entra em regime em pouco 

menos de 6s. Como pode ser visto nos gráficos anteriores, a curva roxa 

(sempre medida no ponto mais distante da origem) é sempre a mais 

demorada para entrar em regime. Como esse ultimo gráfico sempre leva em 

consideração essas medidas, podemos afirmar que esse será o tempo 

máximo para que o sistema todo entre na temperatura final em regime 

permanente.  
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4.3. CONDIÇÕES FINAIS 

 

No instante final de simulação (T = 10s), quando o sistema já está em 

regime, os mapas de temperaturas serão conforme os seguintes: 

 

 - Temperatura do fluido quente (𝜃ℎ) na superfície de troca 

 

 

Figura 4.12 - Mapa de Th no instante final da simulação 

 Representando essa mesma curva da fig. 4.11 em cortes conforme as 

linhas coloridas da fig. 4.5, podemos representar as temperaturas do fluido 

frio no ultimo instante de simulação da seguinte maneira 
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Figura 4.13 - Cortes do mapa de Th no instante final 

 Como já esperado, mesmo em regime, pontos mais próximos à 

entrada do fluido frio (curva vermelha) possuem as menores temperaturas.  

 

 

 

 

 

 

 

 

 



 

42 
 

 - Temperatura do fluido frio (𝜃𝑐) na superfície de troca 

 

Figura 4.14 - Mapa de Tc no instante final 

 Assim como fizemos para o fluido quente, podemos representar esse 

mapa como diversos cortes, dessa vez cortes paralelos ao eixo Y conforme 

as retas coloridas da fig. 4.6. 
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Figura 4.15 - Cortes do mapa de Th no instante final 

 

Também como esperado, pontos medidos próximos à entrada do fluido 

quente (curva vermelha) possuem temperaturas mais altas em regime. 
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- Temperatura da parede (𝜃𝑤) na superfície de troca 

 

Figura 4.16 - Mapa de Tw no instante final 

 Como nos outros casos, podemos representar esse mapa em cortes 

na direção X 
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Figura 4.17 - Corte do mapa de Tw no instante final (Direção x) 

 Assim como podemos representar com cortes na direção y 
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Figura 4.18 - Corte do mapa de Tw no instante final (Direção y) 

 

4.4.  INFLUÊNCIA DE PARÂMETROS 
 

Nessa seção, incluiremos algumas comparações de respostas variando 

alguns dos parâmetros da tabela 4.1. Essas relações serão encontradas a 

partir de um gráfico de comparação das três temperaturas em função do 

tempo no ponto final da malha (como na fig. 4.11) dado que este foi o gráfico 

que nos trouxe mais informações relevantes para a resposta do sistema. 

Nos gráficos a seguir, três curvas de mesma cor representam as 

temperaturas da parede, fluido frio e fluido quente, calculados com um 

parâmetro. Variação da cor das curvas indica a variação do parâmetro. 
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 - Variação de ℎℎ 

 

Figura 4.19 - Comparação do resultado com hh – Variação de 800 a 4500 W/m²K 

 

 A variação de ℎℎ visivelmente implica bastante nas temperaturas de 

regime. Embora o comportamento do sistema ainda tenha a mesma forma – 

Queda brusca inicial de 𝜃ℎ e aumento rápido de 𝜃𝑐 seguido de uma variação 

lenta até o regime – as temperaturas finais são claramente dependentes do 

parâmetro ℎℎ.  

 A direção das setas na fig. 4.19 representa a direção de aumento do 

parâmetro. Por exemplo, para 𝜃ℎ a curva vermelha representa o menor valor 

do parâmetro ℎℎ enquanto a curva preta representa o maior valor do 

parâmetro. Vemos então que a temperatura em regime de 𝜃ℎ aumenta com 

ℎℎ enquanto as temperaturas 𝜃𝑤 e 𝜃𝑐 diminuem. 
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 - Variação de ℎ𝑐 

 

Figura 4.20 - Comparação do resultado com hc – Variação de 800 a 4500 W/m²K 

 

 Assim como na comparação de ℎℎ, vemos que o parâmetro ℎ𝑐 

também influencia bastante as temperaturas em regime do sistema apesar 

de também manter a mesma forma. Nesse caso fica visível uma variação do 

tempo de resposta – o tempo que o sistema leva para entrar em regime. 

Para um menor parâmetro ℎ𝑐 (curva vermelha), o tempo de resposta é 

inclusive maior que o tempo total de simulação enquanto para um valor 

maior de ℎℎ. 

 Por fim, notamos que a temperatura em regime de 𝜃𝑐 aumenta com o 

valor de ℎ𝑐 enquanto as temperaturas 𝜃𝑤 e 𝜃ℎ diminuem com o parâmetro. 
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 - Variação de 𝐶𝑤 

 

Figura 4.21 - Comparação do resultado com Cw  

 Para variar o parâmetro 𝐶𝑤, foram utilizados alguns valores de calor 

específico de alguns materiais sólidos conforme a tabela 4.2. 

 

Tabela 4.2 - Valores variados de Cw [𝑱/(𝒌𝒈.𝑲)] para alguns sólidos 

Estanho 225 

Cobre 385 

Aço 450 

Silício 753 

Alumínio 897 
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 Como fica visível, o parâmetro 𝐶𝑤 não influencia na temperatura de 

regime como os outros parâmetros já vistos, mas tem grande influência no 

tempo de resposta do sistema. Apesar da variação inicial de 𝜃ℎ e 𝜃𝑐 

continuem as mesmas, valores mais baixos de 𝐶𝑤 fazem com que o sistema 

responda muito mais rápido às variações de temperatura. 

 

 - Variação das velocidades 𝑢𝑐 e 𝑢ℎ 

 
Figura 4.22 - Comparação do resultado com uc – Variação de 1 a 5 m/s 
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Figura 4.23 - Comparação do resultado com uh – Variação de 1 a 4 m/s 

 

 Nas fig. 4.22 e 4.23 podemos ver que a velocidade de um dos fluidos 

basicamente só irá alterar a taxa de troca de calor no instante inicial de 

troca, onde ocorre a variação brusca de 𝜃ℎ e 𝜃𝑐. A variação da velocidade 𝑢𝑐 

do fluido frio irá alterar principalmente a taxa de troca de calor do fluido frio 

para a parede enquanto a variação de 𝑢ℎ irá principalmente aumentar a taxa 

de troca do fluido quente com a parede. Embora exista uma mínima 

influência de 𝑢𝑐 na resposta de 𝜃ℎ e de 𝑢ℎ em 𝜃, essa variação é 

consideravelmente pequena. 
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4.5.  RESPOSTA DO SISTEMA A VARIAÇÕES NAS ENTRADAS 

 

 Por fim foram realizadas simulações e análises da resposta do 

sistema estudado quando introduzidas entradas variáveis no tempo. O foco 

dessa etapa foi estudar como é dada a resposta temporal da temperatura na 

saída do fluido quente quando ocorrem variações na entrada do fluido frio. 

 As análises foram tomadas dessa maneira devido ao funcionamento 

desse tipo de equipamento. Em grande parte das aplicações, trocadores 

desse tipo têm como objetivo principal reduzir a temperatura de um 

elemento quente através de um fluido refrigerado até uma temperatura 

adequada. Aqui será estudado como será influenciada a capacidade de 

troca no elemento quente quando ocorre um suposto problema ou variação 

inesperada da temperatura em que o fluido frio entra no trocador. 

 

 - Variação periódica da temperatura do fluido frio 𝜃𝑐 

 

 Foram realizadas algumas simulações para estudar a resposta da 

temperatura do fluido quente 𝜃ℎ quando ocorrem variações periódicas de 

forma senoidal na entrada do fluido frio. Como visível nas fig. 4.24, 4.25 e 

4.26, existe um atraso de fase entre a resposta da temperatura do fluido 

quente e a do fluido frio. Vale notar que os gráficos mostram a saída do 

fluido frio que já possuem outro pequeno atraso da entrada. A variação da 

temperatura da entrada do fluido frio foi simulada como sendo: 

 

𝜃𝑐,𝑒 = 𝜃𝑐,0 + 𝐴 ∗ cos (
𝐵 ∗ 𝜋 ∗ 𝑡

𝑇
)         (4.1) 

 

 Nesse tópico, os termos A e B foram tomados como: 

𝐴 = 5 

𝐵 = 8 
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Figura 4.24 – Temperaturas na saída com variação senoidal em Tc 

 

Figura 4.25 - Temperaturas na saída com variação senoidal em Tc - Baixa frequência 
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Figura 4.26 - Temperaturas na saída com variação senoidal em Tc - Alta frequência 

 

 Por ser um sistema de resposta razoavelmente lenta, os gráficos 

apresentam resultados já esperados. Em alta frequência da entrada, a saída 

que estamos estudando apresenta amplitudes insignificantes dado que não 

tem tempo para variações antes do sinal de entrada voltar a mudar de fase. 

Na simulação de baixa frequência vemos que a amplitude do sinal de saída 

consegue alcançar um valor consideravelmente maior e é visível o atraso de 

fase.  

 Em seguida, foram realizadas novas simulações para estudar a 

influência da amplitude do sinal de entrada. Foram realizados testes criando 

variações também senoidais com amplitudes variando de 2 a 40°C. As 

amplitudes alcançadas no sinal de resposta  foram encontrados conforme a 

tabela 4.3: 
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Tabela 4.3 – Variações de amplitude do sinal de saída Th 

Variação de amplitude de Tc 

Tc_e = Tc_zero + A*cos(pi*B*t/T) 

H = amplitude de Th_s 

A B 
 

H 

1 8 
 

0,18 

2 8 
 

0,33 

4 8 
 

0,52 

5 8 
 

0,85 

7 8 
 

1,17 

8 8 
 

1,36 

10 8 
 

1,72 

15 8 
 

2,6 

20 8 
 

3,46 

 

 

 - Variação da temperatura do fluido frio 𝜃𝑐 com uma rampa 

 

 Em seguida foi realizada uma nova simulação considerando um 

suposto sistema de refrigeração que para de funcionar e gera um aumento 

constante no tempo da temperatura de entrada do fluido frio. Isso se 

aproxima do comportamento de um equipamento que temporariamente para 

de funcionar devido a uma queda de energia ou problema temporário 

similar. 
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Figura 4.27 - Resposta das temperaturas na saída com uma entrada rampa temporária em 
Tc 

 

 Como no tópico anterior, é possível perceber que o aumento da 

temperatura de saída do fluido quente é dado de uma maneira bem mais 

lenta, com amplitude menor e um atraso notável comparado ao sinal de 

entrada. Também foi possível medir que o tempo de retorno para a 

estabilidade após o sinal voltar ao padrão é bem próximo ao tempo de 

estabilização inicial do sistema. 
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5. MODELO DE TROCADOR COM MULTIPLOS PASSES 

  

 Até este ponto foi estudado o comportamento de uma única célula de 

um trocador de calor considerando um único passe dos fluidos não 

misturados. Equipamentos reais em geral possuem sistemas de múltiplos 

passes de fluidos que permite um melhor aproveitamento da diferença de 

temperaturas existente entre os fluidos nas suas respectivas saídas. 

 Para melhorar o modelo apresentado anteriormente e tentar 

aproxima-lo de um equipamento mais prático, foi desenvolvido uma nova 

linha de código que permite considerar uma sequência de células colocadas 

em sequência considerando algumas hipóteses: 

 

 - Nessa etapa, foram considerados somente passes adicionais do 

fluido frio. Como pode ser visto no exemplo da figura 5.1, foram alinhadas 4 

células e é possível ver a direção do escoamento considerada.  

 

 

Figura 5.1 - Modelo físico de um conjunto de células 

 

 - Entre cada uma das células, o fluido quente passa diretamente, 

mantendo a distribuição de temperaturas alinhadas ao escoamento. Já o 

fluido frio, ao passar de uma célula para a seguinte necessita de uma 

variação na orientação do escoamento. Isso irá forçar uma mistura que torna 

irrelevante a distribuição de temperaturas na saída da primeira célula. Será 
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considerado então que ele entra na segunda célula com uma distribuição de 

temperaturas uniforme, igual à temperatura média do ultimo ponto de cálculo 

da célula anterior. 

 - Não será considerada qualquer troca de energia fora das células, 

mesmo que o fluido frio tenha que sair da região considerada para a 

inversão de direção. 

 

5.1. ADAPATAÇOES NO MODELO ORIGINAL 

 

 Para resolver o problema de vários passes, foram feitas algumas 

alterações no modelo original apresentado anteriormente. O modelo 

matemático encontrado na equação 3.9 não sofrerá alterações, porém são 

necessárias mudanças no modelo aplicado no sistema computacional. 

Essas alterações são listadas a seguir 

 

Figura 5.2 - Representação dos vários passes w 

 

 - Como é mostrado na figura 5.2, temos um total de W passes (cada 

nomeado como w = 1, 2, 3... W). No modelo discreto original tínhamos M 
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pontos de cálculo na direção y para cada passo no tempo, no novo sistema 

teremos um total de W*M. 

 - Variável 𝑢𝑐 com sentido dependente do passe w. No modelo original 

ela era constante positiva na direção de x já nessa adaptação ela varia 

conforme a equação: 

 

𝑢𝑐(𝑤)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =  𝑢𝑐(−1)
𝑤+1𝑖          (5.1) 

 

 - Condições de contorno da temperatura do fluido frio nas entradas do 

modelo variando também com w. Devido à variação do sentido de 𝑢𝑐, os 

pontos de entrada do modelo irão variar entre os pontos de coordenada 

𝑖 =  1, para os passes com w impar e 𝑖 =  𝑁 para os passes com w par.  

 Colocando a variável w diretamente na coordenada j, teremos uma 

nova variável 𝑗 = 1, 2, 3…  𝑃, 𝑃 + 1…  2𝑃 …  𝑀𝑃 . Assim, podemos definir as 

distribuições nas entradas como sendo: 

 

{

𝑤 = 1 → θ𝑐(1,1: 𝑃) =  𝜃𝑐,𝑧𝑒𝑟𝑜 

𝑤 = 𝑘, 𝑖𝑚𝑝𝑎𝑟 →  𝜃𝑐(1, (𝑘 − 1) ∗ 𝑃 + 1:𝐾 ∗ 𝑃) = 𝑀é𝑑𝑖𝑎[𝜃𝑐(1, (𝑘 − 2) ∗ 𝑃 + 1: (𝑘 − 1) ∗ 𝑃)

𝑤 = 𝑘, 𝑝𝑎𝑟 →  𝜃𝑐(𝑁, (𝑘 − 1) ∗ 𝑃 + 1:𝐾 ∗ 𝑃) = 𝑀é𝑑𝑖𝑎[𝜃𝑐(𝑁, (𝑘 − 2) ∗ 𝑃 + 1: (𝑘 − 1) ∗ 𝑃)

 

 

5.2. SIMULAÇÕES COM DIVERSOS PASSES 

 

 Inicialmente foram feitas algumas simulações com os mesmos 

parâmetros das simulações originais somente acrescentando um número 

maior de passes. Na primeira simulação, são comparadas as temperaturas 

de saída dos dois fluidos e da parede para uma simulação com 1, 2 e 4 

passes do fluido frio.  
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Figura 5.3 - Comparação dos resultados com diversos passes 

 

 Como é possível ver na figura 5.3, existe uma queda considerável na 

temperatura de saída do fluido quente para passes adicionais. Também é 

possível notar uma distorção no formato das curvas de quatro passes dada à 

proximidade das temperaturas.  

 Devido a essa distorção, foi optado por utilizar uma área de troca 

menor do que a utilizada nas simulações anteriores para observar melhor 

como o sistema responde com maiores números de passes. Originalmente 

foi utilizada uma superfície de troca com dimensões 40x40mm. Nas 

simulações a seguir será considerada uma área de 20x20mm.  

 Na figura 5.4 a seguir podemos ver uma comparação do resultado de 

um trocador 20x20mm variando o número de passes w de 1 a 4. Na tabela 

5.1 estão os valores das temperaturas nos pontos finais da simulação. 

Quando transformados em um gráfico (Figura 5.5), podemos ver melhor 

como as temperaturas finais se modificam com os passes. 
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Figura 5.4 - Comparação dos resultados de 1 a 4 passes 

 

 Como era esperado, vemos que existe uma melhora na eficiência do 

trocador conforme se aumenta o número de passes. Ao mesmo tempo, a 

diferença entre a melhora da eficiência diminua a cada passe adicional. 

 

Tabela 5.1 - Temperaturas finais por número de passes 

Passes Th Tw Tc 

1 366,31 327,46 295,36 

2 360,15 325,31 297,21 

3 355,23 327,19 306,94 

4 351,40 328,46 314,58 

5 348,81 329,48 321,00 

6 346,22 329,94 325,73 
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Figura 5.5 - Gráfico da variação da Temperatura final com os passes 

 

 Outro resultado notável é que a temperatura alcançada na saída de 

𝑇ℎ na condição de trocador de área 20x20mm com 4 passes é bastante 

próxima do que o alcançado no trocador de 40x40mm sem passes 

adicionais (Ambos equipamentos com áreas de troca total iguais) 
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6. CONCLUSÕES 

 

 Com o modelo encontrado e as simulações realizadas, podemos 

chegar a uma conclusão inicial clara. Quando comparada a resposta do 

trocador em fluxo cruzado com a de um trocador de outro tipo – Corrente 

paralela (fig. 6.1) ou contracorrente - fica visível que a resposta não se difere 

tanto entre os modelos. Mesmo com as diferenças construtivas, o sistema 

responde de maneira simular em todos os casos. Inicialmente uma variação 

rápida das temperaturas devido às grandes diferenças de temperaturas 

entre os fluidos e a parede e em seguida, uma variação lente até se chegar 

ao regime. 

 

Figura 6.1 - Resposta de Temp H em um trocador de corrente paralela (BEATO, MONTE, 
2012) 
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 Para que a resposta desse tipo de trocador ficasse 

consideravelmente diferente da resposta de um trocador de fluxo paralelo, 

foi necessário um aumento significativo da dimensão do trocador. Nas 

simulações mostradas nesse trabalho, foi utilizado um trocador de 

dimensões básicas de 0,4m x 0,4m. Mapas de temperatura mais complexos 

só foram encontrados quando utilizado trocadores de dimensões muito 

maiores. Levando em consideração que isso é um modelo teórico e 

trocadores reais com modelo físico próximo ao estudado até aqui não 

chegam a possuir grandes dimensões, é apropriado dizer que esses 

resultados diferentes não chegam a se repetir em um problema real. 

 

 Quanto aos parâmetros do problema, foram encontrados dois 

parâmetros principais que regem o sistema. Os coeficientes de troca de 

calor ℎℎ e ℎ𝑐, que geram diferenças significativas nas temperaturas de 

regime e o calor específico da parede 𝐶𝑤 que gera variações do tempo de 

resposta do sistema. Embora não tenha sido feita uma comparação da 

variação da massa da parede 𝑚𝑤, é possível afirmar pelo modelo 

matemático encontrado que esta terá um efeito de magnitude igual a 

variação de 𝐶𝑤.  

 

 Por fim, é importante deixar claro que os modelos utilizados nesse 

trabalho ainda podem ser complementados. No modelo inicial, foi feita uma 

hipótese de que no escoamento somente as temperaturas iriam variar no 

espaço. Isso acaba por tornar o modelo matemático bastante limitado, só 

sendo possível seu uso com superfícies de troca como placas planas, 

impedindo o modelo de ser adaptado para trocadores de calor com tubos e 

outros modelos. Outra possível adição nesse problema é um avanço na 

programação para incluir passes dos dois fluidos na mesma simulação, mas 

isso necessitaria uma programação mais complicada além de um tempo de 

cálculo inconveniente, considerando que algumas simulações realizadas 

nesse trabalho já consumiram um tempo razoável que ao mesmo tempo que 
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atrasava a análise, dificultava a solução de problemas dada a espera 

necessária entre cada tentativa de simulação. 
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APÊNDICE A – Linhas de comando da simulação (MATLAB) 

clear all 

  
%% Variaveis do escoamento 

  
hh = 2800;  % W/m².K 
hc = 3100; 

  
Ch = 2200;  % J/kg.K 
Cc = 4180;  
Cw = 900; % Aluminio % 

  
mh = 0.3;  % kg/s  
mc = 0.4; 
Mw = 0.002*0.4*0.4*2700;  % kg 

  
uh = 2;  % m/s 
uc = 3; 

  
Lx = 0.4;  % m 
Ly = 0.4;   

  
Thzero = 273+100;  % K 
Tczero = 273+20; 
Twzero = 273+30;  %%  

  
%% Constantes de calculo 

  
S = Lx*Ly;  % m² 

  
E = (hh*S*uh)/(mh*Ch*Lx); 
F = (hh*S)/(Mw*Cw); 
G = (hc*S)/(Mw*Cw); 
H = (hc*S*uc)/(mc*Cc*Ly); 

  
T = 10.0; % s 

  
DeltaT = 0.0002;  % s 
DeltaX = 0.005;  % m 
DeltaY = 0.005; %% 

  

  
%% Pontos de cálculo 

  
x = 0:DeltaX:Lx; xl = 0:DeltaX:(Lx - DeltaX); 
y = 0:DeltaY:Ly; yl = 0:DeltaY:(Ly - DeltaY); 
t = 0:DeltaT:T; 

  
N = size(x,2); 
M = size(y,2); 
P = size(t,2); 
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ThetaH = zeros(N,M); AuxH = ThetaH; Malhah2 = ThetaH; Malhah3 = 

ThetaH; Malhah4 = ThetaH; Malhah5 = ThetaH; Malhah6 = ThetaH; 

Malhah7 = ThetaH; Malhah8 = ThetaH; Malhah9 = ThetaH; 
ThetaW = zeros(N,M); AuxW = ThetaW; Malhaw2 = ThetaW; Malhaw3 = 

ThetaW; Malhaw4 = ThetaW; Malhaw5 = ThetaW; Malhaw6 = ThetaW; 

Malhaw7 = ThetaW; Malhaw8 = ThetaW; Malhaw9 = ThetaW; 
ThetaC = zeros(N,M); AuxC = ThetaC; Malhac2 = ThetaC; Malhac3 = 

ThetaC; Malhac4 = ThetaC; Malhac5 = ThetaC; Malhac6 = ThetaC; 

Malhac7 = ThetaC; Malhac8 = ThetaC; Malhac9 = ThetaC;%% 

  
Mw1 = zeros(N-1,M-1); Mw2 = Mw1; Mw3 = Mw1; Mw4 = Mw1; Mw5 = Mw1; 

Mw6 = Mw1; Mw7 = Mw1; Mw8 = Mw1; Mw9 = Mw1; Mwf = Mw1; 
Mh1 = zeros(N-1,M-1); Mh2 = Mw1; Mh3 = Mw1; Mh4 = Mw1; Mh5 = Mw1; 

Mh6 = Mw1; Mh7 = Mw1; Mh8 = Mw1; Mh9 = Mw1; Mhf = Mw1; 
Mc1 = zeros(N-1,M-1); Mc2 = Mw1; Mc3 = Mw1; Mc4 = Mw1; Mc5 = Mw1; 

Mc6 = Mw1; Mc7 = Mw1; Mc8 = Mw1; Mc9 = Mw1; Mcf = Mw1; 

  
t1 = 1; t2 = 1+(P-1)*0.02; t3 = 1+(P-1)*0.05; t4 = 1+(P-1)*0.075; t5 

= 1+(P-1)*0.1; t6 = 1+(P-1)*0.2; t7 = 1+(P-1)*0.4; t8 = 1+(P-1)*0.5; 

t9 = 1+(P-1)*0.7; 

  

  
%% Condições iniciais e condições de contorno 

  
ThetaH(:,:) = Thzero; 
ThetaW(:,:) = Twzero; 
ThetaC(:,:) = Tczero; 

  
Malhaw1 = ThetaW; 
Malhac1 = ThetaC; 
Malhah1 = ThetaH; 

  

  
%% Calculos 

  
s = 1; 
for s=1:P 
    AuxH = ThetaH; 
    AuxW = ThetaW; 
    AuxC = ThetaC; 

     
    for j=2:M 
        for i=2:N 
          ThetaH(i,j) = AuxH(i,j) + DeltaT*((-1)*uh*(AuxH(i,j)-

AuxH(i,j-1))/(DeltaX) - (E*(AuxH(i,j)-AuxW(i,j)))); 
          ThetaW(i,j) = AuxW(i,j) + DeltaT*(F*(AuxH(i,j)-AuxW(i,j))-

G*(AuxW(i,j)-AuxC(i,j))); 
          ThetaC(i,j) = AuxC(i,j) + DeltaT*((-1)*uc*(AuxC(i,j)-

AuxC(i-1,j))/(DeltaY) - (H*(AuxC(i,j)-AuxW(i,j)))); 

           
        end        
    end 

     
    % funções de temp no tempo em pontos diversos 
    Tfh1(s) = ThetaH(1,M-1); 
    Tfh2(s) = ThetaH(0.2*(N-1),M-1); 
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    Tfh3(s) = ThetaH(0.4*(N-1),M-1); 
    Tfh4(s) = ThetaH(0.6*(N-1),M-1); 
    Tfh5(s) = ThetaH(0.8*(N-1),M-1); 
    Tfhf(s) = ThetaH(N-1,M-1); 

     
    Tfc1(s) = ThetaC(N-1,1); 
    Tfc2(s) = ThetaC(N-1,0.2*(M-1)); 
    Tfc3(s) = ThetaC(N-1,0.4*(M-1)); 
    Tfc4(s) = ThetaC(N-1,0.6*(M-1)); 
    Tfc5(s) = ThetaC(N-1,0.8*(M-1)); 
    Tfcf(s) = ThetaC(N-1,(M-1)); 

     
    Tfw1(s) = ThetaW(N-1,1); 
    Tfw2(s) = ThetaW(N-1,0.2*(M-1)); 
    Tfw3(s) = ThetaW(N-1,0.4*(M-1)); 
    Tfw4(s) = ThetaW(N-1,0.6*(M-1)); 
    Tfw5(s) = ThetaW(N-1,0.8*(M-1)); 
    Tfwf(s) = ThetaW(N-1,(M-1)); 

     
    Tfw_1(s) = ThetaW(1,M-1); 
    Tfw_2(s) = ThetaW(0.2*(N-1),M-1); 
    Tfw_3(s) = ThetaW(0.4*(N-1),M-1); 
    Tfw_4(s) = ThetaW(0.6*(N-1),M-1); 
    Tfw_5(s) = ThetaW(0.8*(N-1),M-1); 
    Tfw_f(s) = ThetaW(N-1,M-1); 

     
    % Malhas em pontos do tempo 
    if s == t2 
        Malhaw2 = ThetaW; Malhac2 = ThetaC; Malhah2 = ThetaH; 
    end 
    if s == t3 
        Malhaw3 = ThetaW; Malhac3 = ThetaC; Malhah3 = ThetaH; 
    end 
    if s == t4 
        Malhaw4 = ThetaW; Malhac4 = ThetaC; Malhah4 = ThetaH;  
    end 
    if s == t5 
        Malhaw5 = ThetaW; Malhac5 = ThetaC; Malhah5 = ThetaH; 
    end 
    if s == t6 
        Malhaw6 = ThetaW; Malhac6 = ThetaC; Malhah6 = ThetaH; 
    end 
    if s == t7 
        Malhaw7 = ThetaW; Malhac7 = ThetaC; Malhah7 = ThetaH; 
    end 
    if s == t8 
        Malhaw8 = ThetaW; Malhac8 = ThetaC; Malhah8 = ThetaH; 
    end 
    if s == t9 
        Malhaw9 = ThetaW; Malhac9 = ThetaC; Malhah9 = ThetaH; 
    end 

         
end 

  

  
%% Correção dos gráficos de malha 
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for i=1:N-1 
    for j=1:M-1 
        Mw1(i,j)=Malhaw1(i+1,j+1); Mc1(i,j)=Malhac1(i+1,j+1); 

Mh1(i,j)=Malhah1(i+1,j+1); 
        Mw2(i,j)=Malhaw2(i+1,j+1); Mc2(i,j)=Malhac2(i+1,j+1); 

Mh2(i,j)=Malhah2(i+1,j+1); 
        Mw3(i,j)=Malhaw3(i+1,j+1); Mc3(i,j)=Malhac3(i+1,j+1); 

Mh3(i,j)=Malhah3(i+1,j+1);  
        Mw4(i,j)=Malhaw4(i+1,j+1); Mc4(i,j)=Malhac4(i+1,j+1); 

Mh4(i,j)=Malhah4(i+1,j+1);  
        Mw5(i,j)=Malhaw5(i+1,j+1); Mc5(i,j)=Malhac5(i+1,j+1); 

Mh5(i,j)=Malhah5(i+1,j+1);  
        Mw6(i,j)=Malhaw6(i+1,j+1); Mc6(i,j)=Malhac6(i+1,j+1); 

Mh6(i,j)=Malhah6(i+1,j+1);  
        Mw7(i,j)=Malhaw7(i+1,j+1); Mc7(i,j)=Malhac7(i+1,j+1); 

Mh7(i,j)=Malhah7(i+1,j+1);  
        Mw8(i,j)=Malhaw8(i+1,j+1); Mc8(i,j)=Malhac8(i+1,j+1); 

Mh8(i,j)=Malhah8(i+1,j+1);  
        Mw9(i,j)=Malhaw9(i+1,j+1); Mc9(i,j)=Malhac9(i+1,j+1); 

Mh9(i,j)=Malhah9(i+1,j+1);  
        Mwf(i,j)=ThetaW(i+1,j+1); Mcf(i,j)=ThetaC(i+1,j+1); 

Mhf(i,j)=ThetaH(i+1,j+1);  
    end 
end 

         
%% GERAÇÃO DE GRÁFICOS 
% 0 - graficos no tempo 
% 1 - gráficos da supef Tw no tempo 
% 2 - gráficos da supef Th no tempo 
% 3 - gráficos da supef Tc no tempo 

  
fprint = 5; 

  
%Gráfico de temp/t em seis cortes paralelos ao escoamento + surface 

da temp 
%final 

  
if fprint == 0 

  
figure (1) 
plot(t,Tfh1,'r'); 
hold on; 
plot(t,Tfh2,'y'); 
plot(t,Tfh3,'g'); 
plot(t,Tfh4,'c'); 
plot(t,Tfh5,'b'); 
plot(t,Tfhf,'m'); 
grid on; 
xlabel('Tempo[s]') 
ylabel('Temperatura[K]') 
title('TempH x Tempo em cortes parelelos ao fluxo do fluido 

quente'); 
legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L', 

'T na saída'); 
hold off; 
saveas(1,'ThetaH_tempo_cortesTf', 'png'); 

  
figure (2) 
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plot(t,Tfc1,'r'); 
hold on; 
plot(t,Tfc2,'y'); 
plot(t,Tfc3,'g'); 
plot(t,Tfc4,'c'); 
plot(t,Tfc5,'b'); 
plot(t,Tfcf,'m'); 
grid on; 
xlabel('Tempo[s]') 
ylabel('Temperatura[K]') 
title('TempC x Tempo em cortes parelelos ao fluxo do fluido frio'); 
legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L', 

'T na saída'); 
hold off; 
saveas(2,'ThetaC_tempo_cortesTf', 'png'); 

  
figure (3) 
plot(t,Tfw1,'r'); 
hold on; 
plot(t,Tfw2,'y'); 
plot(t,Tfw3,'g'); 
plot(t,Tfw4,'c'); 
plot(t,Tfw5,'b'); 
plot(t,Tfwf,'m'); 
grid on; 
xlabel('Tempo[s]') 
ylabel('Temperatura[K]') 
title('TempW x Tempo em cortes parelelos ao fluxo do fluido frio'); 
legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L', 

'T na saída'); 
hold off; 
saveas(3,'ThetaW_tempo_cortes_Y_Tf', 'png'); 

  
figure (4) 
plot(t,Tfw_1,'r'); 
hold on; 
plot(t,Tfw_2,'y'); 
plot(t,Tfw_3,'g'); 
plot(t,Tfw_4,'c'); 
plot(t,Tfw_5,'b'); 
plot(t,Tfw_f,'m'); 
grid on; 
xlabel('Tempo[s]') 
ylabel('Temperatura[K]') 
title('TempW x Tempo em cortes parelelos ao fluxo do fluido 

quente'); 
legend('T zero', 'T a 0.2*L', 'T a 0.4*L', 'T a 0.6*L', 'T a 0.8*L', 

'T na saída'); 
hold off; 
saveas(4,'ThetaW_tempo_cortes_X_Tf', 'png'); 

  
figure (5) 
plot(t,Tfwf,'k'); 
hold on; 
plot(t,Tfcf,'b'); 
plot(t,Tfhf,'r'); 
grid on; 
xlabel('Tempo[s]') 
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ylabel('Temperatura[K]') 
title('TempC/TempW/TempH x Temp na saída do trocador'); 
legend('Temp W', 'Temp C', 'Temp H'); 
saveas(5,'Comparação_temps', 'png'); 

  
end 

  
%Surface em 10 passos do tempo para Tw 

  
if fprint == 1 

     
figure (1) 
surf(xl,yl,Mw1); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=0s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(1,'ThetaW_tempo_M1', 'png'); 

  
figure (2) 
surf(xl,yl,Mw2); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=0.2s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(2,'ThetaW_tempo_M2', 'png'); 

  
figure (3) 
surf(xl,yl,Mw3); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=0.5s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(3,'ThetaW_tempo_M3', 'png'); 

  
figure (4) 
surf(xl,yl,Mw4); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=0.75s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(4,'ThetaW_tempo_M4', 'png'); 

  
figure (5) 
surf(xl,yl,Mw5); 
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grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=1s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(5,'ThetaW_tempo_M5', 'png'); 

  
figure (6) 
surf(xl,yl,Mw6); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=2s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(6,'ThetaW_tempo_M6', 'png'); 

  
figure (7) 
surf(xl,yl,Mw7); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=4s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(7,'ThetaW_tempo_M7', 'png'); 

  
figure (8) 
surf(xl,yl,Mw8); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=5s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(8,'ThetaW_tempo_M8', 'png'); 

  
figure (9) 
surf(xl,yl,Mw9); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante t=7s') 
axis([0 0.4 0 0.4 290 345]); 
saveas(9,'ThetaW_tempo_M9', 'png'); 

  
figure (10) 
surf(xl,yl,Mwf); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
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ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tw [K]'); 
title ('Temperatura Tw no instante final') 
axis([0 0.4 0 0.4 290 345]); 
saveas(10,'ThetaW_tempo_Mf', 'png'); 

  
end 

  
%Surface em 10 passos do tempo para Th 

  
if fprint == 2 

     
figure (1) 
mesh(xl,yl,Mh1); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=0s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(1,'ThetaH_tempo_M1', 'png'); 

  
figure (2) 
mesh(xl,yl,Mh2); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=0.2s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(2,'ThetaH_tempo_M2', 'png'); 

  
figure (3) 
mesh(xl,yl,Mh3); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=0.4s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(3,'ThetaH_tempo_M3', 'png'); 

  
figure (4) 
mesh(xl,yl,Mh4); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=0.7s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(4,'ThetaH_tempo_M4', 'png'); 

  
figure (5) 
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mesh(xl,yl,Mh5); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=1s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(5,'ThetaH_tempo_M5', 'png'); 

  
figure (6) 
mesh(xl,yl,Mh6); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=2s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(6,'ThetaH_tempo_M6', 'png'); 

  
figure (7) 
mesh(xl,yl,Mh7); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=4s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(7,'ThetaH_tempo_M7', 'png'); 

  
figure (8) 
mesh(xl,yl,Mh8); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=5s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(8,'ThetaH_tempo_M8', 'png'); 

  
figure (9) 
mesh(xl,yl,Mh9); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante t=7s') 
axis([0 0.4 0 0.4 340 375]); 
saveas(9,'ThetaH_tempo_M9', 'png'); 

  
figure (10) 
mesh(xl,yl,Mhf); 
grid on; 
box on; 



 

77 
 

xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Th [K]'); 
title ('Temperatura Th no instante final') 
axis([0 0.4 0 0.4 340 375]); 
saveas(10,'ThetaH_tempo_Mf', 'png'); 

  
end 

  
%Surface em 10 passos do tempo para Tc 

  
if fprint == 3 

     
figure (1) 
surf(xl,yl,Mc1); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=0s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(1,'ThetaC_tempo_M1', 'png'); 

  
figure (2) 
surf(xl,yl,Mc2); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=0.2s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(2,'ThetaC_tempo_M2', 'png'); 

  
figure (3) 
surf(xl,yl,Mc3); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=0.5s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(3,'ThetaC_tempo_M3', 'png'); 

  
figure (4) 
surf(xl,yl,Mc4); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=0.7s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(4,'ThetaC_tempo_M4', 'png'); 
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figure (5) 
surf(xl,yl,Mc5); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=1s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(5,'ThetaC_tempo_M5', 'png'); 

  
figure (6) 
surf(xl,yl,Mc6); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=2s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(6,'ThetaC_tempo_M6', 'png'); 

  
figure (7) 
surf(xl,yl,Mc7); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=4s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(7,'ThetaC_tempo_M7', 'png'); 

  
figure (8) 
surf(xl,yl,Mc8); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=5s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(8,'ThetaC_tempo_M8', 'png'); 

  
figure (9) 
surf(xl,yl,Mc9); 
grid on; 
box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante t=7s') 
axis([0 0.4 0 0.4 290 310]); 
saveas(9,'ThetaC_tempo_M9', 'png'); 

  
figure (10) 
surf(xl,yl,Mcf); 
grid on; 
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box on; 
xlabel ('Coordenada X [m]'); 
ylabel ('Coordenada Y [m]'); 
zlabel ('Temperatura Tc [K]'); 
title ('Temperatura Tc no instante final') 
axis([0 0.4 0 0.4 290 310]); 
saveas(10,'ThetaC_tempo_Mf', 'png'); 

  
end 

  
if fprint == 4 

     
    vh1 = Mhf(1,:); 
    vh2 = Mhf(16,:); 
    vh3 = Mhf(32,:); 
    vh4 = Mhf(48,:); 
    vh5 = Mhf(64,:); 
    vh6 = Mhf(80,:); 

     

     
figure (1) 
plot(xl,vh1,'r',xl,vh2,'y',xl,vh3,'g',xl,vh4,'c',xl,vh5,'b',xl,vh6,'

m'); 
grid on; 
xlabel('Distância X [m]'); 
ylabel('Temperatura[K]'); 
title('Cortes do mapa de Temp H no ultimo instante de simulação / 

Temp H x Distância da entrada (X)'); 
saveas(1,'TempH_cortes_mapa_final', 'png'); 

  
    vc1 = Mcf(:,1); 
    vc2 = Mcf(:,16); 
    vc3 = Mcf(:,32); 
    vc4 = Mcf(:,48); 
    vc5 = Mcf(:,64); 
    vc6 = Mcf(:,80); 

     
figure (2) 
plot(yl,vc1,'r',yl,vc2,'y',yl,vc3,'g',yl,vc4,'c',yl,vc5,'b',yl,vc6,'

m'); 
grid on; 
xlabel('Distância Y [m]') 
ylabel('Temperatura[K]') 
title('Cortes do mapa de Temp C no ultimo instante de simulação / 

Temp C x Distância da entrada (Y)'); 
saveas(2,'TempC_cortes_mapa_final', 'png'); 

  
    vw1 = Mwf(:,1); 
    vw2 = Mwf(:,16); 
    vw3 = Mwf(:,32); 
    vw4 = Mwf(:,48); 
    vw5 = Mwf(:,64); 
    vw6 = Mwf(:,80); 

     
figure (3) 
plot(yl,vw1,'r',yl,vw2,'y',yl,vw3,'g',yl,vw4,'c',yl,vw5,'b',yl,vw6,'

m'); 
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grid on; 
xlabel('Distância Y [m]') 
ylabel('Temperatura[K]') 
title('Cortes do mapa de Temp W no ultimo instante de simulação / 

Temp W x Distância da entrada (Y)'); 
saveas(3,'TempW_cortes_mapa_final_Y', 'png'); 

  
    vw_1 = Mwf(1,:); 
    vw_2 = Mwf(16,:); 
    vw_3 = Mwf(32,:); 
    vw_4 = Mwf(48,:); 
    vw_5 = Mwf(64,:); 
    vw_6 = Mwf(80,:); 

     

     
figure (4) 
plot(xl,vw_1,'r',xl,vw_2,'y',xl,vw_3,'g',xl,vw_4,'c',xl,vw_5,'b',xl,

vw_6,'m'); 
grid on; 
xlabel('Distância X [m]'); 
ylabel('Temperatura[K]'); 
title('Cortes do mapa de Temp W no ultimo instante de simulação / 

Temp W x Distância da entrada (X)'); 
saveas(4,'TempW_cortes_mapa_final_X', 'png'); 

  

  
end 

 

 


